請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9042完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫璐西(Lucy Sun Hwang) | |
| dc.contributor.author | Wei-Ting Huang | en |
| dc.contributor.author | 黃蔚婷 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:07:27Z | - |
| dc.date.available | 2014-08-14 | |
| dc.date.available | 2021-05-20T20:07:27Z | - |
| dc.date.copyright | 2009-08-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-07 | |
| dc.identifier.citation | 顏昌瑞。1994。龍眼。認識高品質台灣水果。財團法人豐年社。台北,台灣。69-72。
顧文霞。1967。中藥之研究。國立台灣大學醫學院藥學系研究報告。328。 沈宜蓁。2005。龍眼花萃取物抗氧化活性之探討。國立台灣大學食品科技研究所碩士論文。 謝孟潔。2006。龍眼花抗氧化成分之研究。國立台灣大學食品科技研究所碩士論文。 Aejmelaeus, R. T. Holm, P. Kaukine, U. Age-related changes in the peroxyl radical scavenging capacity of human plasma. Free Radic Biol Me., 1997, 23 ,69-75. Allen, B,W,; Demchenko, I, T,; Piantadosi, C.A. Two faces of nitric oxide: implications for cellular mechanisms of oxygen toxicity. J Appl Physiol. 2009, 106, 662-667. Arts, I. C.; van De Putte, B.; Hollman, P. C. Catechin contents of foods commonly consumed in the Netherlands. Tea, wine, fruit juices, and chocolate milk. J. Agric. Food Chem. 2000, 48, 1752–1757. Artursson, P. and Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 1991, 175, 880–885. Bagchi, D.; Bagchi, M.; Stohs, S.J. Cellular protection with proanthocyanidins derived from grape seeds. J. Alcohol. Drug Edu. 2001, 957, 260-270. Benzie, I. F.; Strain, J. J. Ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Ana.l Biochem, 1996, 239, 70-76. Boyer, J.; Brown, D. and Liu, R.H. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers. J. Agric. Food Chem. 2004, 52, 7172-7179. Cao, G.; Prior, R. L. Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol. 1999, 299, 50-62. Celada, A. and Nathan, C. Macrophage activation revisited. Immunol. Today. 1994, 15, 100-102. Cesarone, M. R.; Belcaro, G.; Carratelli, M. A simple test to monitor oxidative stress. Int. Angiol. 1999, 18, 127-30. Chevion, M.; Berenshtein, E.; Stadtman, E. R. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic. Res. 2000, 33, S99-S108. Chirayath, M.V.; Gajdzik, L.; Hulla, W. Vitamin D increase tight-junction conductance and paracellular Ca 2+ transport in Caco-2 cell cultures. Am. J. Physiol. 1998, 274, 389-396. Cho, D.I., Koo, N.Y., Chung, W. J., Kim, T.S., Ryu, S. Y., Im S. Y. and Kim K. M. Effects of resveratrol-related hydroxystilbenes on the nitric oxide production in macrophage cells: structural requirements and mechanism of action. Life Sci. 2002, 71, 2071-2082. Clermont, G.; Vergely, C.; Jazayeri, S. Systemic free radical activation is a major event involved in myocardial oxidative stress related to cardiopulmonary bypass. 2002, Anesthesiology, 96, 80-87. Cornelli, U. Antioxidant use in nutraceuticals. Clin Dermatol, 2009, 27,175-194. Deprez, S.; Mila, I.; Huneau, J.F.; Tome, D., and Scalbert, A. Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial caco-2 cells. Antioxid. Redox. Signal., 2001, 3, 957-967. De Bruyne, T. ; Pieters, L.; Witvrouw, M.; De Clercq, E.; Vanden Berghe, D.; Vlietinck, A.J. Biological evaluation of proanthocyanidin dimers and related polyphenols. J. Nat. Prod., 1999, 62, 954-958. Dirsch, V. M.; Stuppner, H.; Vollmar, A. M. The Griess assay: suitable for a bio-guided fractionation of anti-inflammatory plant extracts? Planta Med. 1998, 64 ,423–426. Dizdaroglu, M.; Jaruga, P.; Birincioglu, M. Rodriguex, H.. Free radical induced damage to DNA: mechanism and measurement. Free Radic. Biol. Med. 2002, 32, 1102-15. Duffy, S.J.; Vita, J.A.; Holbrook, M.,; Swerdloff, P.L.; Keaney, J.F. Effect of acute and chronic tea consumption on platelet aggregation in patients with coronary artery disease. Arterioscler. Thromb. Vasc. 2001, 21, 1084–1089. Elimrani, I.; Lahjouji, K.; Seidman, E. Expression and localization of organic cation/carnitine transporter(OCTN2) in Caco-2 cell. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 284, G863-871. Espin, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using , 2-diphellyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 2000, 48, 648-656. Facino, R.M.; Carini, M.; Aldini, G.; Bombardelli, E.; Morazzoni,P.; Morelli, R. Free-radicals scavenging action and anti-enzyme activities of procyanidines from vitis-vinifera - a mechanism for their capillary protective action. Arzneimittelforschung. 1994, 44, 592-601. Finberg, R.W.; Re, F.; Popova, L.; Golenbock, D.T.; Kurt-Jones, E.A. Cell activation by Toll-like receptors: role of LBP and CD14. J. Endotoxin. Res. 2004, 10, 413-418. Ghosh, S. and Baltimore, D. Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B. Nature. 1990, 344, 678-682. Gronbaek, M.; Becker, U.; Johansen, D.; Tonnesen, H.; Jensen, G.; Sorensen, T. I. A. Population based cohort study of the association between alcohol intake and cancer of the upper digestive tract. J. Br. Med. 1998. 317, 844–847. Hatano, T.; Miyatake, H.; Natsume, M.; Osakabe, N. Takizawa, T.; Ito, H.; Yoshida, T. Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant elects. Phytochemistry. 2002, 59, 749-758. Hidalgo, I.J.; Borchardt, R.T., Transport of bile acid in human intestinal epithelial cell line, Caco-2. Biochim. Biophy. Acta. 1990, 1035, 97-103. Hilgers, A.R.; Conradi, R.A. and Burton, P.S. Caco-2 cell monolayer as modal for drug transport across the intestinal mucosa. Pharm. Res. 1990, 7, 902-901. Howell, A.B., Vorsa, N., Der Marderosian, A., Foo, L.Y. Inhibition of the adherence of P-fimbriated Escherichia coli to uro-epithelial-cell surfaces by proanthocyanidin extracts from cranberries. N. Engl. J. Med. 1998, 339, 1085-1086. Ho, S.C., Hwang, L.S., Shen, Y.J., Lin, C.C. Suppressive effect of a proanthocyanidin-rich extract from longan (dimocarpus longan lour.) flowers on nitric oxide production in LPS-stimulated macrophage cells. J. Agric. Food Chem. 2007, 55, 10664-10670. Hűmmer, W., Schreier, P. Analysis of proanthocyanidins. Mol. Nutr. Food Res. 2008, 52, 1381-1398. Hunter, J.; Jepson, M.A.; Tsuruo, T. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. J. Biol. Chem. 1993, 268, 14991-14997. Ingelman-Sundberg, M.; Kaur, H.; Terelius, Y. Hydroxylation of salicylate by microsomial fraction and cytochrome P-450. Lack of production of 2,3-dihydroxybenzoate unless hydroxyl radical formation is permitted. J. Biochem. 1991, 276, 753-757. Katiyar, S.K.; Mukhtar, H., Tea in chemoprevention of cancer: epidemiologic and experimental studies. Int. J. Oncol. 1996, 8, 221–238. Kim, H.; Lee, H. S.; Chang, K. T.; Ko, T. H.; Baek, K. J.; Kwon, N. S. Chloromethyl ketones block induction of nitric oxide synthase in murine macrophages by preventing activation of nuclear factor-κB. J. Immunol. 1995, 154 , 4741–4748. Knekt, P.; Kumpulainen, J,; Ja‥rvinen, R. Rissanen, H., Helio‥vaara, M., Reunanen, A., Hakulinen, T., Aromaa, A., Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr., 2002, 76, 560–568. Knutson, M. D.; Handelman, G. J.; Viteri, F. E. Methods for measuring ethane and pentane in expired air from rats and humans. Free Radic. Biol. Med. 2000, 28, 514-519. Lang, J.; Celotto, C.; Esterbauer, H. Quantitative determination of the lipid peroxidation product 4-hydroxynonenal by high performance liquid chromatography. Anal. Biochem. 1985, 150, 369-378. Liaudet, L.; Soriano, F.G.; Szabo, C. Biology of nitric oxide signaling. Crit. Care. Med. 2000, 28, N37-N52. Lima, E.S.; Di Mascio, P.; Rubbo, H.; Abdalla, D.S. Characterization of linoleic acid nitration in human blood plasma by mass spectrometry. Biochemistry 2002, 41, 10717-10722. Liu, J.; Yeo, H. C.; Doniger, S. J.; Ames, B. N. Assay of aldehydes from lipid peroxidation: gas chromatography–mass spectrometry compared to thiobarbituric acid. Annal. Biochem. 1997, 245, 161-166. Lyons, C.R.; Orloff, G.J. Cunningham, J.M. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J. Biol. Chem. 1992, 267, 6370-6374. Mackenzie, G. G.; Oteiza, P. I. Modulation of transcription factor NF-kB in Hodgkin’s lymphoma cell lines: Effect of (-)-epicatechin. Free Radic. Res. 2006, 40, 1086-1094. Marletta, M.A. Natric oxid: biosynthesis and biological significance. Trends Biochem. Sci. 1989, 14, 488-492. Mikami, T.; Tomita, S.; Qu, G.J. Is allantoin in serum and urine a useful indicator of exercise-induced oxidative stress in humans? Free Radic. Res. Med. 2000, 32, 235-244. Miller, N. J.; Rice-Evans, C.; Davies, M.J. A novel method for measuring antioxidant capacity and its application on monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407-412. Moini, H., Guo, Q.O., Packer, L. J. Xanthine oxidase and xanthine dehydrogenase inhibition by the procyanidin-rich french maritime pine bark extract, Pycnogenol((R)): A protein binding effect. Agric. Food Chem. 2002, 505, 141-149. Moison, R. M.; de Baufort, A. J.; Haasnoot, A. A. Uric acid and ascorbic acid redox ratio in plasma and tracheal aspirate of preterm babies with acute and chronic lung disease. Free Radic. Biol. Med. 1997, 23, 226-234. Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991, 43, 109-142. Montine, T.J.; Quinn, J.F.; Milatovic, D. Peripheral F2-isoprostanes and F-4 isoprostanes are not increased in Alzheimer's disease. Ann. Neurol. 2003, 53, 175-179. Montuschi, P.; Barnes, P. J.; Roberts, L. J. Isoprostanes markers and mediators of oxidative stress. FASEB, 2004, 18, 1791-1800. Morrissette, N.; Gold, E.; Aderem, A. The macrophage- a cell for all seasons. Trends Cell Biol. 1999, 9, 199-201. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J. Immunol. Methods 1983, 65, 55–63. Nakamura, H.; Vaage, J., Valev. Measurement of plasma glutaredoxin and thioredoxin in healthy volunteers and during open hearth surgery. Free Radic. Bio.l Med. 1998, 24, 1176-1186. Nicholas, C.; Batra, S.; Vargo, M. A.; Voss, O. H.; Gavrilin, M. A.; Wewers, M. D.; Guttridge, D. C.; Grotewold, E.; Doseff, A. I. Apigenin blocks lipopolysaccharide- induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-κB through the suppression of p65 phosphorylation. J. Immunol. 2007, 179, 7121–7127. Osakabe, N.; Yasuda, A.; Natsume M.; Takizawa, T.; Terao, J.; Kondo, K. Catechins and their oligomers linked by C4 -> C8 bonds are major cacao polyphenols and protect low-density lipoprotein from oxidation in vitro. Exp. Biol. Med. 2002, 227, 51-56. Parente, L. and Perretti, M. Advances in the pathophsiology of constitutive and inducible cyclooxygenases: two enzymes in the spotlight. Biochem. Pharmacol. 2003, 65, 153-159. Puhl, H.; Waeg. G.; Esterbauer, H. Method to determin oxidation of low-density lipoproteins. Mrthods Enzymol. 1994, 233, 425-441. Radi, R.; Peluffo, G.; Alvarez, M.N. Unraveling peroxynitrite formation in biological systems. Free Radic. Biol. Med. 2001, 30, 463-468. Ray, S.D.; Kumar, M.A.; Bagchi, D. A novel proanthocyanidin IH636 grape seed extract increases in vivo Bcl-XL expression and prevents acetaminophen-induced programmed and unprogrammed cell death in mouse liver. Arch. Biochem. Biophys. 1999, 369, 42-58. Prior, R.L.; Cao, G,H, Analysis of botanicals and dietary supplements for antioxidant capacity: A review. J. AOAC Int. 2000, 83, 950-956. Prior, R.L.; Hong, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assay for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity(ORAC(FL))) of plasma and other biological and food samples. J. Agric. Food Chem. 2003, 51, 3273-3279. Sai, Y.; Kaneko, Y.; Ito, S., Predominant cantribution of organic anion transporting polupeptited OATP-B to apical uptake of estrone-3 sulfate by human instestinal Caco-2 cells. Durg. Meta.b Dispos. 2006, 34,1423-1431. Saito, H.; Motohashi, H.; Mukai, M.; Inui, K. Cloning and characterization of a pH-sensing regulatory factor that modulates transport activity of the human H+/di-tripeptide transporter, PEPT1. Biochem. Biophys. Res. Commun. 1997, 237, 577-582. Sang, S.; Lee, M.J.; Ho, C.T.; Yang, C.S. Stability of tea polyphenol (-)-epigallocatechin-3-gallateand formation of dimers and epimers under common experimental conditions. J. Agric. Food Chem. 2005, 53, 9478-9484. Schimke, I.; Kah,l P.E.; Romaniuk, P.; Papies, B. Concentration of thiobarbituric acid reactive substances (TBARS) in serum following myocardial infarction. Klin Wochensch.r 1986, 64, 1237-1239. Schleiser, K.; Harwat, M.; Bohm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002, 36, 177-187. Sen, C.K.; Bagchi, D. Regulation of inducible adhesion molecule expression in human endothelial cells by grape seed proanthocyanidin extract. Mol. Cell Biochem. 2001, 216, 1-7. Serban, M.; Ghiea, V.; Pasarica, D. Oxidative aggression in atherosclerosis associated to degenerative psychoorganic disturbances. Rom. J. Intern. Med. 2002, 40, 117-123. Shahat, A.A.; Cos, P.; De Bruyne, T.; Apers, S.; Hammouda, F.M.; Ismail, S.I.; Azzam, S.; Claeys, M.; Goovaerts, E.,; Pieters, L.; Vanden Berghe, D.; Vlietinck, A.J. Antiviral and antioxidant activity of flavonoids and proanthocyanidins from Crataegus sinaica. Planta Med. 2002, 68, 539-541. Shimada, K.; Fujikawa, K.; Yahara, K. and Nakaura, T. Antioxidant properties of xanthan on the autoxidative of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945-948. Shimizu, M.; Kobayashi, Y.; Suzuki, M.; Satsu, H.; Miyamoto, Y. Regulation of intestinal glucose transport by tea catechins. Biofactors. 2000, 13, 61-65. Sun, H.; Chow, E.C.; Liu, S.; Du, Y.; Pang, S.D. The Caco-2 cell monolayer: usefulness and limitation. Expert Opin. Drug Metab. Toxicol. 2008, 4, 395-411. Tamai, I.; Takanaga, H.; Maeda, H. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acid. Biochem. Biophys. Res. Commun. 1995, 214, 482-489. Tsujii, M.; Kawano, S., Tsuji, S.; Sawaoka, H.; Hori, M.; DuBois, R.N. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998, 93, 705-716. Varma, S.D.; Devamanoharan, P.S. Excretion of hydrogen peroxide in human urine. Free Radic. Res. Commun. 1990, 8, 73-78. Vinson, J.A.; Dabbagh, Y.A.; Serry, M.M.; Jang, J.H. Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in-vitro oxidation model for heart disease. J. Agric. Food Chem. 1995, 43, 2800-2802. Vaidyanathan, J.B.; Walle, T. Transport and metabolism of the tea flavonoid (–)-epicatechin by the human intestinal cell line Caco-2. Pharm. Res. 2001, 18, 1420-1425. Wanasundara, U. N.; Shahidi, F. Antioxidant and pro-oxidant activity of green tea extracts in marine oils. Food Chem. 1998, 63, 335–342. Winston, G. W.; Regoli, F.; Dugas, A.J. A rapid gas chromatographic assay for determining oxyradical scavenging capacity of antioxidants and biological fluids. Free Radic. Biol. Med. 1998, 24, 480-493. Wolfe, K.L.; Liu, R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007, 55, 8896-8907. Xia, C.Q.; Liu, N.; Yang, D. Expression localization, and functional characteristics of breast cancer resistance protein in Caco-2 cells. Drug. Metab. Dispos. 2005, 33,637-643. Yee, S. In vitro permeability across caco-2 cell can predict in vivo absorption in man-fact or myth. Pharm. Res. 1997, 14, 763-766. Yi, W.; Akoh, C.C.; Fischer, J. and Krewer, G. Absorption of anthocyanins from blueberry extracts by Caco-2 human intestinal cell monolayers. J. Agric. Food Chem. 2006, 54, 5651-5658. Young, J.F.; Dragsted, L.O.; Haraldsdottir, J.; Daneshvar, B.; Kall, M.A.; Loft, S. Nilsson, L.; Nielsen, S.E.; Mayer, B.; Skibsted, L.H.; Huynh-Ba, T.; Hermetter, A.; Sandstrom, B., Green tea extract only affects markers of oxidative status postprandially: lasting antioxidant effect of flavonoid. free diet. Br. J. Nutr. 2002, 87, 343–355. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9042 | - |
| dc.description.abstract | 許多研究發現多酚類物質的攝取能增加身體內抵抗氧化壓力的能力,而在眾多的多酚類物質中,原花青素及兒茶素被認為是較有效的自由基清除劑。本實驗室之前的研究發現,龍眼 (Dimocarpus longan Lour.) 花水萃出物及甲醇萃出物皆具有良好的抗氧化效果,其主要的活性物質為proanthocyanidin A2 (PA2) 及(-)-epicatechin (EC)。然而目前對於PA2之生物可利用率的研究仍十分有限。
本研究利用Caco-2細胞單層膜之模式系統探討PA2及EC在模擬人類腸道系統之吸收情形,藉以評估其生物可利用率。實驗中發現PA2相當不穩定,PA2經細胞實驗後,以HPLC分析發現會產生3個不同滯留時間的波峰,以MS及NMR鑑定出除PA2外,另兩個波峰為PA2的同分異構物epicatechin-(4β→8;2β→O→7)-ent-catechin,(PA4);epicatechin- (4β→6;2β→O→7)- ent-catechin,(PA5)。此外由於龍眼花中的PA2及EC並非單獨存在,故本實驗以不同莫爾比或重量比的PA2:EC (2:1)、(1:1)、(1:2) 和PA2及EC在龍眼花中天然存在的比例 (1:3.3),4個混合組;以及PA2、EC、PA4及PA5,4個純物質組,進一步探討PA2及EC以及由PA2產生的同分異構物的生物可利用率、抗氧化及抗發炎功效。 Caco-2細胞單層膜通透試驗結果發現PA2能被腸黏膜細胞所吸收進入trans-well下層,且隨著時間的增加,通透至下層的PA2量也就越趨增加;然而EC則完全不能通過細胞單層膜,這是由於Caco-2細胞上有對EC高專一性的外吐蛋白所致。另外,PA4 通透率 (Papp = 11.45 ± 5.02 ×10-6 cm/s) 遠高於PA2 (Papp = 4.72 ± 0.42×10-6 cm/s) 為其2.4倍,推測是因為PA4的catechin部位促進了PA4的吸收。然而PA5 (Papp = 2.51 ± 0.21×10-6 cm/s) 卻沒有如同PA4有這麼好的通透率,其可能的原因仍須進一步探究。在各不同比例PA2:EC混合組中,發現EC對於PA2的吸收有干擾作用,造成PA2的通透率減少,各混合組PA2的通透率均約為1.5 × 10-6 cm/s左右,而EC仍無法被吸收。 在抗發炎實驗中則發現 PA2與其同分異構物及EC均有抑制lipopolysaccharide (LPS) 誘導RAW 264.7巨噬細胞產生NO的效果,其中又以PA2的抑制效果最好;PA2的同分異構物 (PA4及 PA5) 則效果較差;另外,PA2:EC混合組中的效果,則隨著EC所佔比例的增加而降低,推測可能的原因在於EC較不能被細胞吸收所致。 在抗氧化試驗中發現,EC於各種體外抗氧化試驗中均有較佳的效果;然而在細胞抗氧化試驗 (cell antioxidant activity assay) 則發現,PA2的效果遠優於EC,可能由於EC較不能被細胞吸收所致。 | zh_TW |
| dc.description.abstract | Epidemiological studies have shown that dietary flavonoids may contribute to the prevention of oxidative damage in our body. Among different flavonoids, proanthocyanidins have received quite significant interest due to their observed health benefits. Previous study in our laboratory indicated that the water and methanol extracts of longan (Dimocarpus longan Lour.) flower had good antioxidative activity, and proanthocyanidin A2 (PA2) and (-)-epicatechin (EC) were found to be the major active compounds.
PA2 is a very unstable compound, it could easily be transformed to its isomers epicatechin-(4β→8;2β→O→7)-ent-catechin (PA4) and epicatechin- (4β→6;2β→O→7)- ent-catechin (PA5) in cell culture medium. PA2 and EC are present together in longan flower, so the objective of this study was to use the 4 pure compounds PA2, EC, PA4 and PA5 and also 4 compounds mixtures with different molar or weight ratios of PA2 and EC (2:1), (1:1), (1:2) and nature existence condition (1:3.3), to test their bioavailability, anti-inflammatory and anti-oxidant effects. The Caco-2 cells model has been used to test the bioavailability. Caco-2 cells are derived from human adenocarcinoma and will differentiate into polarized enterocyte-like monolayers, acting similarly to human intestinal epithelial cells. Caco-2 cell monolayer system has provided a useful model to evaluate intestinal transepithelial transport and accumulation of pure phytochemicals. Results of this study showed that PA2 could be absorbed and transported to basolateral side with the apparent permeability coefficient (Papp) of 4.72 ± 0.42×10-6 cm/s but EC could not be transported to basolateral side. On the other hand, PA4 can be absorbed and transport to basolateral side with the Papp = 11.45 ± 5.02×10-6 cm/s which was even higher than PA2, it may be due to the presence of catechin in the lower unit of the molecule. Nevertheless, PA5 (Papp = 2.51±0.21×10-6cm/s) did not possess good permeability as PA4, the reason needs further investigation. As for the mixtures groups, it was found that the permeability of PA2 was interfered by the presence of EC and EC still could not be absorbed by Caco-2 cell. Inhibition of LPS-induced NO production in RAW264.7 cell was used as anti-inflammatory assay model. PA2 showed good ability in inhibiting NO formation but PA2 isomers did not show as good effects. Compared to PA2, EC was found to be less effective. As for the mixtures groups, the anti-inflammatory effect was better when EC was in lower ratio in the mixture. In the chemical based in vitro antioxidant assays (DPPH, ORAC) EC had better antioxidant activity than PA2. However, in the cell based antioxidant assay (CAA), the effect of PA2 was far better than EC. The mixture group also has this similarity: when the EC was present more in the ratio, the chemical based in vitro antioxidant effect was better but the cell based antioxidant effect was worse. This may be because EC can not be absorbed by cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:07:27Z (GMT). No. of bitstreams: 1 ntu-98-R96641008-1.pdf: 3313008 bytes, checksum: 772d7475588b9c45e7ea3e8ed39315b7 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT III 目錄 V 圖次 X 表次 XIII 壹、前言 1 貳、文獻整理 2 第一節 、體外模式之生物可利用率 2 一、Caco-2 細胞簡介 2 二、Caco-2 cell單層膜之模擬動物腸道試驗 4 三、 Caco-2 cell單層膜完整性及通透率 4 第二節、發炎 7 一、發炎簡介 7 二、巨噬細胞 (Macrophage) 7 三、一氧化氮(NO) 8 四、環氧化酵素Cyclooxygenase (COX) 10 五、脂多醣體Lipopolysaccharide (LPS) 10 第三節、氧化壓力 12 一、自由基 12 二、氧化壓力的主要來源 14 三、 氧化壓力的測定 15 四、抗氧化物質 17 第四節、材料介紹 19 一、龍眼花 19 二、原花青素(Proanthocyanidins) 21 三、兒茶素 22 參、研究目的與實驗架構 25 第一節、研究目的 25 第二節、實驗架構 26 肆、材料與方法 27 第一節、實驗材料與儀器設備 27 一、實驗材料 27 二、實驗細胞株 27 三、化學藥品與試劑 27 (一)、化學藥品 27 (二)、溶劑 29 (三)、層析材料 29 四、細胞培養溶液 30 五、西方墨點法 30 六、儀器設備 31 (一)、一般儀器設備 31 (二)、化學分析儀器設備 31 (三)、細胞實驗儀器設備 32 (四)、實驗耗材 33 七、實驗各種溶液配方 33 第二節、實驗方法 37 一、Proanthocyanidin A2及其isomer之分離純化 37 (一) 龍眼花80%丙酮萃取物之製備 37 (二) 龍眼花80%丙酮萃取物之溶劑區分萃取 37 (三) Amberlite XAD-7 resin管柱層析 37 (四) Sephadex LH-20管柱層析 38 (五) Proanthocyanidin A2 同分異構物之純化 39 (六) 高效能液相層析儀 (HPLC) 分析條件 39 (七) 質譜分析 40 二、Proanthocyanidin A2及epicatechin之穩定性分析 40 (一)樣品配製 40 (二)於細胞通透試驗環境中樣品之穩定性分析 40 (三) 於細胞抗發炎試驗環境中PA2之穩定性分析 41 (四) 於細胞抗氧化試驗環境中PA2之穩定性分析 41 三、以CACO-2细胞模式探討通透率及吸收率 41 (一) 細胞培養 41 (二) 細胞繼代培養 41 (三) Transwell insert 培養 42 (四) 單層細胞膜完整性測試 42 (五) Caco-2細胞單層膜通透率試驗 42 (六) 各樣品經Caco-2細胞單層通透試驗後之分佈 43 四、以RAW 264.7探討樣品之抗發炎效果 44 (一) 化學NO (Nitric oxide) 螫合能力測定 44 (二) 樣品抑制LPS誘導RAW 264.7巨噬細胞NO生成測定 44 (三) iNOS、COX-2蛋白質表現分析 46 五、抗氧化實驗 48 (一) 抑制銅離子誘導人類LDL氧化反應試驗 48 (二) 清除DPPH自由基活性測定 49 (三) 氧自由基吸收能力之測驗 (Oxygen radical absorbance capacity, ORAC) 50 (四) 細胞抗氧化能力測定 (Cellular Antioxidant Avtivity (CAA) assay) 50 第三節、統計分析 51 伍、結果與討論 53 一、Proanthocyanidin A2及其isomer之分離純化 53 (一) 龍眼花80%丙酮萃取物 53 (二) 龍眼花80 % 丙酮萃取物之溶劑區分萃取 53 (三) 龍眼花丙酮粗萃物乙酸乙酯層之amberlite XAD-7 resin管柱層析 53 (四) 龍眼花LF-A-EA-XADII之Sephadex LH-20管柱層析 54 (五) Proanthocyanidin A2 同分異構物之純化 57 二、Proanthocyanidin A2及Epicatechin之穩定性分析 63 (一) PA2於細胞單層膜通透試驗之穩定性分析 63 (二) PA2於細胞抗發炎試驗之穩定性分析 68 (三) PA2於細胞抗氧化試驗之穩定性分析 74 三、以Caco-2细胞模式探討通透率及吸收率 79 (一) Caco-2細胞存活率分析-MTT assay 79 (二) 以Caco-2 細胞模式探討待測樣品的吸收率 81 1.以Caco-2 細胞模式探討EC的吸收率 83 2以Caco-2 細胞模式探討PA2的吸收率 85 3. 以Caco-2 細胞模式探討PA4的吸收率 88 4 以Caco-2 細胞模式探討PA5的吸收率 91 5 以Caco-2 細胞模式探討PA2:EC(2:1)、(1:1)、(1:2)、(1:3.3) 的吸收率 93 四、抗發炎實驗 96 (一) NO (Nitric oxide) 螫合能力測定 96 (二). 抑制以LPS誘導RAW 264.7 巨噬細胞產生NO之抗發炎效果 98 1 RAW 264.7細胞存活率分析-MTT assay 98 2 抑制以LPS誘導RAW 264.7 巨噬細胞產生NO之抗發炎效果 100 (三) . iNOS、COX-2蛋白質表現分析 102 五、抗氧化實驗 103 (一) DPPH自由基清除能力 103 (二) 氧自由基吸收能力之測驗 (Oxygen radical absorbance capacity, ORAC) 105 (三) 抑制銅離子誘導人類LDL氧化反應試驗 108 (四) 細胞抗氧化模式 110 1 細胞存活率分析-MTT assay 110 2 細胞抗氧化能力測定 (Cellular Antioxidant Activity (CAA) assay) 112 陸、結論 122 1. 穩定性試驗 122 柒、參考文獻 124 捌、附錄 130 | |
| dc.language.iso | zh-TW | |
| dc.title | 以體外Caco-2 細胞模式系統探討龍眼花中proanthocyanidin A2 及epicatechin之生物可利用率以及其抗發炎與抗氧化效果 | zh_TW |
| dc.title | Transport and absorption of proanthocyanidin A2 and epicatechin from longan flower in Caco-2 cell monolayer model and the anti-inflammatory as well as antioxidant effects | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林志城(Chih-Cheng Lin),潘敏雄(Min-Hsiung Pan),蕭寧馨(Ning-Sing, Shaw),何其儻(Chi-Tang Ho) | |
| dc.subject.keyword | 龍眼花,原花青素,Caco-2細胞,抗發炎,抗氧化, | zh_TW |
| dc.subject.keyword | longan flower,proanthocyanidin,Caco-2 cell,anti-inflammatory,antioxidant, | en |
| dc.relation.page | 137 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-08-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 3.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
