Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90201
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張鈞棣zh_TW
dc.contributor.advisorChun-Ti Changen
dc.contributor.author曾泓翔zh_TW
dc.contributor.authorHung-Hsiang Tsengen
dc.date.accessioned2023-09-22T17:50:04Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-13-
dc.identifier.citation1. Brouwer, A.S., M. Van Den Broek, A. Seebregts, and A. Faaij, Impacts of large-scale Intermittent Renewable Energy Sources on electricity systems, and how these can be modeled. Renewable and Sustainable Energy Reviews, 2014. 33: p. 443-466.
2. Barton, J.P. and D.G. Infield, Energy storage and its use with intermittent renewable energy. IEEE transactions on energy conversion, 2004. 19(2): p. 441-448.
3. 經濟部能源局, 110年能源統計手冊, 經濟部能源局, Editor. 2021.
4. Pullen, K.R., The status and future of flywheel energy storage. Joule, 2019. 3(6): p. 1394-1399.
5. Perazzelli, P. and G. Anagnostou, Design issues for compressed air energy storage in sealed underground cavities. Journal of Rock Mechanics and Geotechnical Engineering, 2016. 8(3): p. 314-328.
6. Zhang, F., P. Zhao, M. Niu, and J. Maddy, The survey of key technologies in hydrogen energy storage. International journal of hydrogen energy, 2016. 41(33): p. 14535-14552.
7. Ali, M.H., B. Wu, and R.A. Dougal, An overview of SMES applications in power and energy systems. IEEE transactions on sustainable energy, 2010. 1(1): p. 38-47.
8. Mongird, K., V.V. Viswanathan, P.J. Balducci, M.J.E. Alam, V. Fotedar, V.S. Koritarov, and B. Hadjerioua, Energy storage technology and cost characterization report. 2019, Pacific Northwest National Lab.(PNNL), Richland, WA (United States).
9. Smith, E., Storage of electrical energy using supercritical liquid air. Proceedings of the Institution of Mechanical Engineers, 1977. 191(1): p. 289-298.
10. Antonelli, M., S. Barsali, U. Desideri, R. Giglioli, F. Paganucci, and G. Pasini, Liquid air energy storage: Potential and challenges of hybrid power plants. Applied energy, 2017. 194: p. 522-529.
11. Storage, H.P., Liquid air energy storage 2016. Available at: www. highview-power. com [accessed 15.2. 2016].
12. Sciacovelli, A., A. Vecchi, and Y. Ding, Liquid air energy storage (LAES) with packed bed cold thermal storage–From component to system level performance through dynamic modelling. Applied energy, 2017. 190: p. 84-98.
13. Castle, W., Air separation and liquefaction: recent developments and prospects for the beginning of the new millennium. International Journal of Refrigeration, 2002. 25(1): p. 158-172.
14. Morgan, R., S. Nelmes, E. Gibson, and G. Brett, Liquid air energy storage–analysis and first results from a pilot scale demonstration plant. Applied energy, 2015. 137: p. 845-853.
15. Sinatov, S., Method for Operating a Liquid Air Energy Storage. 2022, Google Patents.
16. Su, H., C. Lv, J. Shang, B. Huang, Y. Feng, and J. Wu. Performance study of preloaded cryogenic bearings in liquid hydrogen pump. in IOP Conference Series: Materials Science and Engineering. 2022. IOP Publishing.
17. Clarke, H., A. Martinez-Herasme, R. Crookes, and D. Wen, Experimental study of jet structure and pressurisation upon liquid nitrogen injection into water. International journal of multiphase flow, 2010. 36(11-12): p. 940-949.
18. 李侑澄, 液態氮與水批次於鍋爐內混合以獲得液態氮的可用能. 2020.
19. Nakoryakov, V., A. Tsoi, I. Mezentsev, and A. Meleshkin, Boiling-up of liquid nitrogen jet in water. Thermophysics and Aeromechanics, 2014. 21: p. 279-284.
20. Wen, D., H. Chen, Y. Ding, and P. Dearman, Liquid nitrogen injection into water: Pressure build-up and heat transfer. Cryogenics, 2006. 46(10): p. 740-748.
21. Archakositt, U., S. Nilsuwankosit, and T. Sumitra, Effect of volumetric ratio and injection pressure on water-liquid nitrogen interaction. Journal of nuclear science and technology, 2004. 41(4): p. 432-439.
22. Karami, R. and N. Ashgriz, Flashing sprays, in Handbook of Atomization and Sprays. 2011, Springer. p. 233-254.
23. Riznic, J.R. and M. Ishii, Bubble number density and vapor generation in flashing flow. International Journal of Heat and Mass Transfer, 1989. 32(10): p. 1821-1833.
24. John, J.E., Gas dynamics. 1984.
25. Rist, D., Dynamik realer Gase: Grundlagen, Berechnungen und Daten für Thermogasdynamik, Strömungsmechanik und Gastechnik. 2013: Springer-Verlag.
26. Fischer, M.-D., S. Baier, and K.E. Boettcher, Similarity solution of subcritical pressure discharges from vessels for arbitrary gases. Chemical Engineering Science, 2023. 267: p. 118312.
27. Muñoz-Esparza, D., J.-M. Buchlin, K. Myrillas, and R. Berger, Numerical investigation of impinging gas jets onto deformable liquid layers. Applied Mathematical Modelling, 2012. 36(6): p. 2687-2700.
28. Sato, S., J. Okada, Y. Ueda, and M. Iguchi, Visualization of Intermittent Splash with Gas Blowing from a Top Lance–Breakup of Cavity Surface Causing Intermittent Splash–. ISIJ International, 2020. 60(9): p. 2118-2120.
29. Nguyen, A.V. and G.M. Evans, Computational fluid dynamics modelling of gas jets impinging onto liquid pools. Applied Mathematical Modelling, 2006. 30(11): p. 1472-1484.
30. Chawla, T., The Kelvin-Helmholtz instability of the gas-liquid interface of a sonic gas jet submerged in a liquid. Journal of Fluid Mechanics, 1975. 67(3): p. 513-537.
31. Funada, T. and D. Joseph, Viscous potential flow analysis of Kelvin–Helmholtz instability in a channel. Journal of Fluid Mechanics, 2001. 445: p. 263-283.
32. Awasthi, M.K., Kelvin-Helmholtz instability of viscoelastic liquid-viscous gas interface with heat and mass transfer. International Journal of Thermal Sciences, 2021. 161: p. 106710.
33. Lamont, J.C. and D. Scott, An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE Journal, 1970. 16(4): p. 513-519.
34. Davies, J.T. and S. Ting, Mass transfer into turbulent jets. Chemical Engineering Science, 1967. 22(12): p. 1539-1548.
35. Fortescue, G. and J. Pearson, On gas absorption into a turbulent liquid. Chemical Engineering Science, 1967. 22(9): p. 1163-1176.
36. Kulkarni, A.A. and J.B. Joshi, Simultaneous measurement of flow pattern and mass transfer coefficient in bubble columns. Chemical engineering science, 2004. 59(2): p. 271-281.
37. Theofanous, T., R. Houze, and L. Brumfield, Turbulent mass transfer at free, gas-liquid interfaces, with applications to open-channel, bubble and jet flows. International Journal of Heat and Mass Transfer, 1976. 19(6): p. 613-624.
38. Choo, Y.J. and C.-H. Song, PIV measurements of turbulent jet and pool mixing produced by a steam jet discharge in a subcooled water pool. Nuclear engineering and design, 2010. 240(9): p. 2215-2224.
39. Atmane, M., W. Asher, and A. Jessup, On the use of the active infrared technique to infer heat and gas transfer velocities at the air‐water free surface. Journal of Geophysical Research: Oceans, 2004. 109(C8).
40. Gulawani, S.S., S.K. Dahikar, C.S. Mathpati, J.B. Joshi, M.S. Shah, C.S. RamaPrasad, and D.S. Shukla, Analysis of flow pattern and heat transfer in direct contact condensation. Chemical Engineering Science, 2009. 64(8): p. 1719-1738.
41. Nebuchinov, A.S., Y.A. Lozhkin, A.V. Bilsky, and D.M. Markovich, Combination of PIV and PLIF methods to study convective heat transfer in an impinging jet. Experimental Thermal and Fluid Science, 2017. 80: p. 139-146.
42. Kim, Y.-S., J.-W. Park, and C.-H. Song, Investigation of the stem-water direct contact condensation heat transfer coefficients using interfacial transport models. International Communications in Heat and Mass Transfer, 2004. 31(3): p. 397-408.
43. Dahikar, S.K., M.J. Sathe, and J.B. Joshi, Investigation of flow and temperature patterns in direct contact condensation using PIV, PLIF and CFD. Chemical Engineering Science, 2010. 65(16): p. 4606-4620.
44. Cramer, M. and L. Best, Steady, isentropic flows of dense gases. Physics of Fluids A: Fluid Dynamics, 1991. 3(1): p. 219-226.
45. Majdalani, J. and B.A. Maicke, Inversion of the fundamental thermodynamic equations for isentropic nozzle flow analysis. 2012.
46. Urata, E., A flow rate equation for subsonic Fanno flow. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013. 227(12): p. 2724-2729.
47. Ockendon, H., J. Ockendon, and S. Falle, The Fanno model for turbulent compressible flow. Journal of Fluid Mechanics, 2001. 445: p. 187-206.
48. Hoge, H.J. and R.A. Segars, Choked flow-A generalization of the concept and some experimental data. AIAA Journal, 1965. 3(12): p. 2177-2183.
49. Trapp, J.A. and V.H. Ransom, A choked-flow calculation criterion for nonhomogeneous, nonequilibrium, two-phase flows. International Journal of Multiphase Flow, 1982. 8(6): p. 669-681.
50. Winters, W.S., G.H. Evans, S.F. Rice, and R. Greif, An experimental and theoretical study of heat and mass transfer during the venting of gas from pressure vessels. International journal of heat and mass transfer, 2012. 55(1-3): p. 8-18.
51. Felver, T.G., N.J. Paradiso, W.S. Winters Jr, G.H. Evans, and S.F. Rice, Transient PVT measurements and model predictions for vessel heat transfer. Part II. 2010, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA ….
52. Madenci, E. and I. Guven, The finite element method and applications in engineering using ANSYS®. 2015: Springer.
53. Kohnke, P., Ansys, in Finite Element Systems: A Handbook. 1982, Springer. p. 19-25.
54. Anderson, J.D. and J. Wendt, Computational fluid dynamics. Vol. 206. 1995: Springer.
55. Fischer, M.-D. and K.E. Boettcher, A fast method to predict the transient, subcritical gas discharge from a pressure vessel. Chemical Engineering Science, 2022. 249: p. 117276.
56. Dutton, J.C. and R.E. Coverdill, Experiments to study the gaseous discharge and filling of vessels. International Journal of Engineering Education, 1997. 13(2): p. 123-134.
57. Thorncroft, G., J.S. Patton, and R. Gordon. Modeling compressible air flow in a charging or discharging vessel and assessment of polytropic exponent. in 2007 Annual Conference & Exposition. 2007.
58. 黃明祥, 小半球水球的共振行為. 2022.
59. Morini, G.L., M. Lorenzini, and S. Salvigni, Friction characteristics of compressible gas flows in microtubes. Experimental thermal and fluid science, 2006. 30(8): p. 733-744.
60. Celata, G., M. Lorenzini, G. Morini, and G. Zummo, Friction factor in micropipe gas flow under laminar, transition and turbulent flow regime. International Journal of heat and fluid flow, 2009. 30(5): p. 814-822.
61. Sletfjerding, E. and J.S. Gudmundsson, Friction factor directly from roughness measurements. J. Energy Resour. Technol., 2003. 125(2): p. 126-130.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90201-
dc.description.abstract為發展超低溫儲能技術,本研究建立一套將液態氮轉換為高壓氮氣的增壓系統,藉此產生高壓流體,用以作功發電。該系統以高壓氮氣將液氮射入裝水的封閉鍋爐內,使液氮與水快速地熱交換,並持續增壓直到達熱力學平衡。結果顯示水和氮在鍋爐中快速增壓,由於液氮的消耗,會於鍋爐產生比噴射液氮時更高的壓力。在噴射過程中,液氮一旦與水接觸,將以極快的速度汽化。如果未能及時結束噴射,汽化後的氮氣將會回流,導致最終鍋爐壓力下降。因此,液氮的噴射時間為系統運作的一個關鍵參數。本研究基於氣體動力學理論建立了一套噴射模型,透過實驗所得的熱傳功率,能夠準確模擬系統的噴射過程,並預測最佳的噴射時間,以及最佳噴射時所得的最終鍋爐壓力。實驗結果顯示,當噴射壓力較低時,容易出現噴射不完全的情況。而隨著噴射壓力的增加,熱傳功率也相應上升。然而,熱傳功率的提升同時限制了噴射時間的長度。因此,在適當的噴射壓力下,仍需搭配相應的噴射時間,才能獲得預期的最終鍋爐壓力。本研究的最終目的是使每單位液氮能輸出更多功,亦即在相同空間內射入更多的液氮,增加液氮吸熱量的同時也將增加輸出功。藉由本文中探討的噴射壓力、熱傳功率和噴射時間之間的關係,為進一步提升液氮增壓提供了有價值的指引。zh_TW
dc.description.abstractTo explore the feasibility and application value of liquid air energy storage (LAES), we developed an experimental device to convert liquid nitrogen into high-pressure nitrogen; and the converted high pressure can be used for power generation. In this device, liquid nitrogen is pressurized by high pressure nitrogen and injected into a closed boiler containing an aqueous solution; after the liquid nitrogen is mixed with the aqueous solution, there is a rapid heat exchange continuously pressurized until thermal equilibrium. The results show rapid pressurization of the vapourization process and downstream pressurization above the injection pressure due to liquid nitrogen consumption. During the injection process, once the liquid nitrogen comes into contact with water, it will vaporize very rapidly. If the injection is not completed in time, the vaporized nitrogen will flow back, and the final boiler pressure will decrease. Hence, the injection time of liquid nitrogen is a crucial parameter for system operation. In this study, an injection model based on gas dynamic theory was developed to accurately simulate the injection process. By utilizing experimentally obtained heat transfer power, the model can predict the optimal injection time and final boiler pressure at the optimal injection time. The experimental results indicate incomplete injection is more likely to occur when the injection pressure is low. As the injection pressure increases, the heat transfer power also increases. However, the increase in heat transfer power imposes limitations on the duration of the injection time. Therefore, achieving the desired final boiler pressure requires the appropriate combination of injection pressure and corresponding injection time. The ultimate goal of this study is to maximize the work output per unit of liquid nitrogen, i.e., injecting more liquid nitrogen into the same space, which will increase the heat absorption of the liquid nitrogen and the work output. The relationship between injection pressure, heat transfer power, and injection time explored in this paper provides a valuable guide to improving liquid nitrogen boost.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:50:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:50:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第1章 緒論 1
第2章 實驗方法 5
2.1 液氮增壓系統 5
2.2 液氮噴射實驗與氮氣噴射實驗 7
2.3 液氮與水的直接接觸熱傳 10
2.4 管道摩擦因子量測:氮氣排氣實驗 14
2.5 氮氣連通實驗 14
第3章 噴射模型 17
3.1 氮氣噴射模型 17
3.2 噴射模型驗證之一、與文獻資料比較 23
3.3 管道摩擦因子擬合 26
3.4 噴射模型驗證之二、與連通實驗資料比較 28
3.5 液氮噴射模型 30
第4章 結果與討論 37
4.1 壓力及溫度變化 39
4.2 噴射時間的影響 44
4.3 模型計算與實驗結果比較 49
4.4 模型預測鍋爐壓力值 51
4.5 液氮噴射量修正 53
第5章 結論 56
參考文獻 57
-
dc.language.isozh_TW-
dc.subject超低溫流體zh_TW
dc.subject儲能zh_TW
dc.subject直接接觸熱傳zh_TW
dc.subject增壓zh_TW
dc.subject氣體動力學zh_TW
dc.subjectdirect contact heat transferen
dc.subjectenergy storageen
dc.subjectpressure boosteren
dc.subjectcryogenic fluidsen
dc.subjectgas dynamicsen
dc.title超低溫發電機組增壓系統噴射時間之最佳化zh_TW
dc.titleOptimizing the Injection Time for the Pressure Booster of a Cryogenic Power Systemen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王安邦;黃美嬌 ;蔡協澄zh_TW
dc.contributor.oralexamcommitteeAn-Bang Wang;Mei-Jiau Huang;Hsieh-Chen Tsaien
dc.subject.keyword超低溫流體,直接接觸熱傳,儲能,增壓,氣體動力學,zh_TW
dc.subject.keywordcryogenic fluids,direct contact heat transfer,energy storage,pressure booster,gas dynamics,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202301973-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf4.75 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved