Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9018
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張麗冠
dc.contributor.authorChien-Chang Chenen
dc.contributor.author陳建彰zh_TW
dc.date.accessioned2021-05-20T20:06:43Z-
dc.date.available2011-08-14
dc.date.available2021-05-20T20:06:43Z-
dc.date.copyright2009-08-14
dc.date.issued2009
dc.date.submitted2009-08-11
dc.identifier.citationAdams A (1987) Replication of latent Epstein-Barr virus genomes in Raji cells. J Virol 61(5): 1743-1746
Adamson AL, Kenney S (1999) The Epstein-Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol 73(8): 6551-6558
Aiyar A, Tyree C, Sugden B (1998) The plasmid replicon of EBV consists of multiple cis-acting elements that facilitate DNA synthesis by the cell and a viral maintenance element. EMBO J 17(21): 6394-6403
Andersson-Anvret M, Forsby N, Klein G, Henle W, Biorklund A (1979) Relationship between the Epstein-Barr virus genome and nasopharyngeal carcinoma in Caucasian patients. Int J Cancer 23(6): 762-767
Baumann M, Feederle R, Kremmer E, Hammerschmidt W (1999) Cellular transcription factors recruit viral replication proteins to activate the Epstein-Barr virus origin of lytic DNA replication, oriLyt. EMBO J 18(21): 6095-6105
Bryant H, Farrell PJ (2002) Signal Transduction and Transcription Factor Modification during Reactivation of Epstein-Barr Virus from Latency. J Virol 76(20): 10290-10298
Buermeyer AB, Deschenes SM, Baker SM, Liskay RM (1999) Mammalian DNA mismatch repair. Annu Rev Genet 33: 533-564
Cao QP, Pitt S, Leszyk J, Baril EF (1994) DNA-dependent ATPase from HeLa cells is related to human Ku autoantigen. Biochemistry 33(28): 8548-8557
Cayrol C, Flemington EK (1995) Identification of cellular target genes of the Epstein-Barr virus transactivator Zta: activation of transforming growth factor beta igh3 (TGF-beta igh3) and TGF-beta 1. J Virol 69(7): 4206-4212
Cayrol C, Flemington EK (1996) The Epstein-Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. EMBO J 15(11): 2748-2759
Chang LK, Chung JY, Hong YR, Ichimura T, Nakao M, Liu ST (2005) Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33(20): 6528-6539
Chang LK, Liu ST (2000) Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28(20): 3918-3925
Chang LK, Liu ST, Kuo CW, Wang WH, Chuang JY, Bianchi E, Hong YR (2008) Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM. J Mol Biol 379(2): 231-242
Chang PJ, Chang YS, Liu ST (1998) Characterization of the BcLF1 promoter in Epstein-Barr virus. J Gen Virol 79 ( Pt 8): 2003-2006
Chang Y, Cheng SD, Tsai CH (2002) Chromosomal integration of Epstein-Barr virus genomes in nasopharyngeal carcinoma cells. Head Neck 24(2): 143-150
Chang YN, Dong DL, Hayward GS, Hayward SD (1990) The Epstein-Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J Virol 64(7): 3358-3369
Chaudhuri B, Xu H, Todorov I, Dutta A, Yates JL (2001) Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci U S A 98(18): 10085-10089
Chen YL, Chen YJ, Tsai WH, Ko YC, Chen JY, Lin SF (2009) The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle 8(1): 58-65
Chevallier-Greco A, Gruffat H, Manet E, Calender A, Sergeant A (1989) The Epstein-Barr virus (EBV) DR enhancer contains two functionally different domains: domain A is constitutive and cell specific, domain B is transactivated by the EBV early protein R. J Virol 63(2): 615-623
Countryman J, Jenson H, Seibl R, Wolf H, Miller G (1987) Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency. J Virol 61(12): 3672-3679
Countryman J, Miller G (1985) Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A 82(12): 4085-4089
Crawford DH (2001) Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 356(1408): 461-473
Daikoku T, Kudoh A, Sugaya Y, Iwahori S, Shirata N, Isomura H, Tsurumi T (2006) Postreplicative mismatch repair factors are recruited to Epstein-Barr virus replication compartments. J Biol Chem 281(16): 11422-11430
de Jesus O, Smith PR, Spender LC, Elgueta Karstegl C, Niller HH, Huang D, Farrell PJ (2003) Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J Gen Virol 84(Pt 6): 1443-1450
de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7(2): 725-737
Dhar SK, Yoshida K, Machida Y, Khaira P, Chaudhuri B, Wohlschlegel JA, Leffak M, Yates J, Dutta A (2001) Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell 106(3): 287-296
Ding Q, Reddy YV, Wang W, Woods T, Douglas P, Ramsden DA, Lees-Miller SP, Meek K (2003) Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 23(16): 5836-5848
Downs JA, Jackson SP (2004) A means to a DNA end: the many roles of Ku. Nat Rev Mol Cell Biol 5(5): 367-378
Epstein MA, Achong BG, Barr YM (1964) Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1(7335): 702-703
Farrell PJ, Rowe DT, Rooney CM, Kouzarides T (1989) Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J 8(1): 127-132
Fixman ED, Hayward GS, Hayward SD (1992) trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66(8): 5030-5039
Flemington E, Speck SH (1990a) Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64(3): 1227-1232
Flemington E, Speck SH (1990b) Epstein-Barr virus BZLF1 trans activator induces the promoter of a cellular cognate gene, c-fos. J Virol 64(9): 4549-4552
Flemington E, Speck SH (1990c) Evidence for coiled-coil dimer formation by an Epstein-Barr virus transactivator that lacks a heptad repeat of leucine residues. Proc Natl Acad Sci U S A 87(23): 9459-9463
Flemington EK, Borras AM, Lytle JP, Speck SH (1992) Characterization of the Epstein-Barr virus BZLF1 protein transactivation domain. J Virol 66(2): 922-929
Flemington EK, Goldfeld AE, Speck SH (1991) Efficient transcription of the Epstein-Barr virus immediate-early BZLF1 and BRLF1 genes requires protein synthesis. J Virol 65(12): 7073-7077
Frappier L, O'Donnell M (1991) Overproduction, purification, and characterization of EBNA1, the origin binding protein of Epstein-Barr virus. J Biol Chem 266(12): 7819-7826
Fujii K, Yokoyama N, Kiyono T, Kuzushima K, Homma M, Nishiyama Y, Fujita M, Tsurumi T (2000) The Epstein-Barr virus pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex. J Virol 74(6): 2550-2557
Gahn TA, Schildkraut CL (1989) The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell 58(3): 527-535
Galande S, Kohwi-Shigematsu T (1999) Poly(ADP-ribose) polymerase and Ku autoantigen form a complex and synergistically bind to matrix attachment sequences. J Biol Chem 274(29): 20521-20528
Gao Z, Krithivas A, Finan JE, Semmes OJ, Zhou S, Wang Y, Hayward SD (1998) The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 72(11): 8559-8567
Giffin W, Gong W, Schild-Poulter C, Hache RJ (1999) Ku antigen-DNA conformation determines the activation of DNA-dependent protein kinase and DNA sequence-directed repression of mouse mammary tumor virus transcription. Mol Cell Biol 19(6): 4065-4078
Giffin W, Torrance H, Rodda DJ, Prefontaine GG, Pope L, Hache RJ (1996) Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature 380(6571): 265-268
Gruffat H, Duran N, Buisson M, Wild F, Buckland R, Sergeant A (1992) Characterization of an R-binding site mediating the R-induced activation of the Epstein-Barr virus BMLF1 promoter. J Virol 66(1): 46-52
Gruffat H, Manet E, Rigolet A, Sergeant A (1990) The enhancer factor R of Epstein-Barr virus (EBV) is a sequence-specific DNA binding protein. Nucleic Acids Res 18(23): 6835-6843
Gruffat H, Sergeant A (1994) Characterization of the DNA-binding site repertoire for the Epstein-Barr virus transcription factor R. Nucleic Acids Res 22(7): 1172-1178
Hammerschmidt W, Sugden B (1988) Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55(3): 427-433
Holley-Guthrie EA, Quinlivan EB, Mar EC, Kenney S (1990) The Epstein-Barr virus (EBV) BMRF1 promoter for early antigen (EA-D) is regulated by the EBV transactivators, BRLF1 and BZLF1, in a cell-specific manner. J Virol 64(8): 3753-3759
Huang J, Liao G, Chen H, Wu FY, Hutt-Fletcher L, Hayward GS, Hayward SD (2006) Contribution of C/EBP proteins to Epstein-Barr virus lytic gene expression and replication in epithelial cells. J Virol 80(3): 1098-1109
Jeanson L, Mouscadet JF (2002) Ku represses the HIV-1 transcription: identification of a putative Ku binding site homologous to the mouse mammary tumor virus NRE1 sequence in the HIV-1 long terminal repeat. J Biol Chem 277(7): 4918-4924
Jiang JH, Wang N, Li A, Liao WT, Pan ZG, Mai SJ, Li DJ, Zeng MS, Wen JM, Zeng YX (2006) Hypoxia can contribute to the induction of the Epstein-Barr virus (EBV) lytic cycle. J Clin Virol 37(2): 98-103
Kirchmaier AL, Sugden B (1995) Plasmid maintenance of derivatives of oriP of Epstein-Barr virus. J Virol 69(2): 1280-1283
Kolman JL, Taylor N, Marshak DR, Miller G (1993) Serine-173 of the Epstein-Barr virus ZEBRA protein is required for DNA binding and is a target for casein kinase II phosphorylation. Proc Natl Acad Sci U S A 90(21): 10115-10119
Kouzarides T, Packham G, Cook A, Farrell PJ (1991) The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene 6(2): 195-204
Kudoh A, Fujita M, Zhang L, Shirata N, Daikoku T, Sugaya Y, Isomura H, Nishiyama Y, Tsurumi T (2005) Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J Biol Chem 280(9): 8156-8163
Kudoh A, Iwahori S, Sato Y, Nakayama S, Isomura H, Murata T, Tsurumi T (2009) Homologous recombinational repair factors are recruited and loaded onto the viral DNA genome in Epstein-Barr virus replication compartments. J Virol 83(13): 6641-6651
Le Roux F, Sergeant A, Corbo L (1996) Epstein-Barr virus (EBV) EB1/Zta protein provided in trans and competent for the activation of productive cycle genes does not activate the BZLF1 gene in the EBV genome. J Gen Virol 77 ( Pt 3): 501-509
Lieber MR, Grawunder U, Wu X, Yaneva M (1997) Tying loose ends: roles of Ku and DNA-dependent protein kinase in the repair of double-strand breaks. Curr Opin Genet Dev 7(1): 99-104
Lieberman PM, Berk AJ (1994) A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA--promoter DNA complex formation. Genes Dev 8(9): 995-1006
Lieberman PM, Hardwick JM, Hayward SD (1989) Responsiveness of the Epstein-Barr virus NotI repeat promoter to the Z transactivator is mediated in a cell-type-specific manner by two independent signal regions. J Virol 63(7): 3040-3050
Lieberman PM, Hardwick JM, Sample J, Hayward GS, Hayward SD (1990) The zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J Virol 64(3): 1143-1155
Lin DY, Fang HI, Ma AH, Huang YS, Pu YS, Jenster G, Kung HJ, Shih HM (2004) Negative modulation of androgen receptor transcriptional activity by Daxx. Mol Cell Biol 24(24): 10529-10541
Liu C, Sista ND, Pagano JS (1996) Activation of the Epstein-Barr virus DNA polymerase promoter by the BRLF1 immediate-early protein is mediated through USF and E2F. J Virol 70(4): 2545-2555
Liu P, Speck SH (2003) Synergistic autoactivation of the Epstein-Barr virus immediate-early BRLF1 promoter by Rta and Zta. Virology 310(2): 199-206
Lu CC, Chen YC, Wang JT, Yang PW, Chen MR (2007a) Xeroderma pigmentosum C is involved in Epstein Barr virus DNA replication. J Gen Virol 88(Pt 12): 3234-3243
Lu CC, Huang HT, Wang JT, Slupphaug G, Li TK, Wu MC, Chen YC, Lee CP, Chen MR (2007b) Characterization of the uracil-DNA glycosylase activity of Epstein-Barr virus BKRF3 and its role in lytic viral DNA replication. J Virol 81(3): 1195-1208
Lu., Chen. (2006) Lytic replication of Epstein-Barr virus. Future Medicine 1
Manet E, Rigolet A, Gruffat H, Giot JF, Sergeant A (1991) Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic Acids Res 19(10): 2661-2667
Matheos D, Ruiz MT, Price GB, Zannis-Hadjopoulos M (2002) Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication. Biochim Biophys Acta 1578(1-3): 59-72
Matson SW, Kaiser-Rogers KA (1990) DNA helicases. Annu Rev Biochem 59: 289-329
Mayeur GL, Kung WJ, Martinez A, Izumiya C, Chen DJ, Kung HJ (2005) Ku is a novel transcriptional recycling coactivator of the androgen receptor in prostate cancer cells. J Biol Chem 280(11): 10827-10833
Merkle D, Douglas P, Moorhead GB, Leonenko Z, Yu Y, Cramb D, Bazett-Jones DP, Lees-Miller SP (2002) The DNA-dependent protein kinase interacts with DNA to form a protein-DNA complex that is disrupted by phosphorylation. Biochemistry 41(42): 12706-12714
Middleton T, Sugden B (1992) EBNA1 can link the enhancer element to the initiator element of the Epstein-Barr virus plasmid origin of DNA replication. J Virol 66(1): 489-495
Miller G, Rabson M, Heston L (1984) Epstein-Barr virus with heterogeneous DNA disrupts latency. J Virol 50(1): 174-182
Mimori T, Akizuki M, Yamagata H, Inada S, Yoshida S, Homma M (1981) Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest 68(3): 611-620
Nash K, Chen W, Salganik M, Muzyczka N (2009) Identification of cellular proteins that interact with the adeno-associated virus rep protein. J Virol 83(1): 454-469
Niederman JC, Miller G, Pearson HA, Pagano JS, Dowaliby JM (1976) Infectious mononucleosis. Epstein-Barr-virus shedding in saliva and the oropharynx. N Engl J Med 294(25): 1355-1359
Novac O, Matheos D, Araujo FD, Price GB, Zannis-Hadjopoulos M (2001) In vivo association of Ku with mammalian origins of DNA replication. Mol Biol Cell 12(11): 3386-3401
Nutter LM, Grill SP, Li JS, Tan RS, Cheng YC (1987) Induction of virus enzymes by phorbol esters and n-butyrate in Epstein-Barr virus genome-carrying Raji cells. Cancer Res 47(16): 4407-4412
Ochem AE, Rechreche H, Skopac D, Falaschi A (2008) Stimulation of the DNA unwinding activity of human DNA helicase II/Ku by phosphorylation. Arch Biochem Biophys 470(1): 1-7
Ochem AE, Skopac D, Costa M, Rabilloud T, Vuillard L, Simoncsits A, Giacca M, Falaschi A (1997) Functional properties of the separate subunits of human DNA helicase II/Ku autoantigen. J Biol Chem 272(47): 29919-29926
Okumura K, Takagi S, Sakaguchi G, Naito K, Minoura-Tada N, Kobayashi H, Mimori T, Hinuma Y, Igarashi H (1994) Autoantigen Ku protein is involved in DNA binding proteins which recognize the U5 repressive element of human T-cell leukemia virus type I long terminal repeat. FEBS Lett 356(1): 94-100
Petroski MD, Wagner EK (1998) Purification and characterization of a cellular protein that binds to the downstream activation sequence of the strict late UL38 promoter of herpes simplex virus type 1. J Virol 72(10): 8181-8190
Quinlivan EB, Holley-Guthrie EA, Norris M, Gutsch D, Bachenheimer SL, Kenney SC (1993) Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1. Nucleic Acids Res 21(14): 1999-2007
Rampakakis E, Di Paola D, Zannis-Hadjopoulos M (2008) Ku is involved in cell growth, DNA replication and G1-S transition. J Cell Sci 121(Pt 5): 590-600
Rawlins DR, Milman G, Hayward SD, Hayward GS (1985) Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell 42(3): 859-868
Reeves WH, Sthoeger ZM (1989) Molecular cloning of cDNA encoding the p70 (Ku) lupus autoantigen. J Biol Chem 264(9): 5047-5052
Rickinson AB, Finerty S, Epstein MA (1978) Inhibition by phosphonoacetate of the in vitro outgrowth of Epstein-Barr virus genome-containing cell lines from the blood of infectious mononucleosis patients. IARC Sci Publ(24 Pt 2): 721-728
Rooney CM, Rowe DT, Ragot T, Farrell PJ (1989) The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol 63(7): 3109-3116
Ruiz MT, Matheos D, Price GB, Zannis-Hadjopoulos M (1999) OBA/Ku86: DNA binding specificity and involvement in mammalian DNA replication. Mol Biol Cell 10(3): 567-580
Schepers A, Pich D, Hammerschmidt W (1993) A transcription factor with homology to the AP-1 family links RNA transcription and DNA replication in the lytic cycle of Epstein-Barr virus. EMBO J 12(10): 3921-3929
Schepers A, Pich D, Hammerschmidt W (1996) Activation of oriLyt, the lytic origin of DNA replication of Epstein-Barr virus, by BZLF1. Virology 220(2): 367-376
Schepers A, Ritzi M, Bousset K, Kremmer E, Yates JL, Harwood J, Diffley JF, Hammerschmidt W (2001) Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J 20(16): 4588-4602
Schreiber E, Matthias P, Muller MM, Schaffner W (1989) Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res 17(15): 6419
Shakibai N, Kumar V, Eisenberg S (1996) The Ku-like protein from Saccharomyces cerevisiae is required in vitro for the assembly of a stable multiprotein complex at a eukaryotic origin of replication. Proc Natl Acad Sci U S A 93(21): 11569-11574
Shi L, Qiu D, Zhao G, Corthesy B, Lees-Miller S, Reeves WH, Kao PN (2007) Dynamic binding of Ku80, Ku70 and NF90 to the IL-2 promoter in vivo in activated T-cells. Nucleic Acids Res 35(7): 2302-2310
Sibani S, Price GB, Zannis-Hadjopoulos M (2005a) Decreased origin usage and initiation of DNA replication in haploinsufficient HCT116 Ku80+/- cells. J Cell Sci 118(Pt 15): 3247-3261
Sibani S, Price GB, Zannis-Hadjopoulos M (2005b) Ku80 binds to human replication origins prior to the assembly of the ORC complex. Biochemistry 44(21): 7885-7896
Sinclair AJ, Brimmell M, Shanahan F, Farrell PJ (1991) Pathways of activation of the Epstein-Barr virus productive cycle. J Virol 65(5): 2237-2244
Sista ND, Pagano JS, Liao W, Kenney S (1993) Retinoic acid is a negative regulator of the Epstein-Barr virus protein (BZLF1) that mediates disruption of latent infection. Proc Natl Acad Sci U S A 90(9): 3894-3898
Smider V, Chu G (1997) The end-joining reaction in V(D)J recombination. Semin Immunol 9(3): 189-197
Speck SH, Chatila T, Flemington E (1997) Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol 5(10): 399-405
Takada K, Shimizu N, Sakuma S, Ono Y (1986) trans activation of the latent Epstein-Barr virus (EBV) genome after transfection of the EBV DNA fragment. J Virol 57(3): 1016-1022
Taylor TJ, Knipe DM (2004) Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol 78(11): 5856-5866
Thomas JA, Hotchin NA, Allday MJ, Amlot P, Rose M, Yacoub M, Crawford DH (1990) Immunohistology of Epstein-Barr virus-associated antigens in B cell disorders from immunocompromised individuals. Transplantation 49(5): 944-953
Toth EC, Marusic L, Ochem A, Patthy A, Pongor S, Giacca M, Falaschi A (1993) Interactions of USF and Ku antigen with a human DNA region containing a replication origin. Nucleic Acids Res 21(14): 3257-3263
Tsuchiya T, Saegusa Y, Taira T, Mimori T, Iguchi-Ariga SM, Ariga H (1998) Ku antigen binds to Alu family DNA. J Biochem 123(1): 120-127
Tsurumi T (1993) Purification and characterization of the DNA-binding activity of the Epstein-Barr virus DNA polymerase accessory protein BMRF1 gene products, as expressed in insect cells by using the baculovirus system. J Virol 67(3): 1681-1687
Tsurumi T, Daikoku T, Kurachi R, Nishiyama Y (1993a) Functional interaction between Epstein-Barr virus DNA polymerase catalytic subunit and its accessory subunit in vitro. J Virol 67(12): 7648-7653
Tsurumi T, Kishore J, Yokoyama N, Fujita M, Daikoku T, Yamada H, Yamashita Y, Nishiyama Y (1998) Overexpression, purification and helix-destabilizing properties of Epstein-Barr virus ssDNA-binding protein. J Gen Virol 79 ( Pt 5): 1257-1264
Tsurumi T, Kobayashi A, Tamai K, Daikoku T, Kurachi R, Nishiyama Y (1993b) Functional expression and characterization of the Epstein-Barr virus DNA polymerase catalytic subunit. J Virol 67(8): 4651-4658
Tuteja N, Tuteja R, Ochem A, Taneja P, Huang NW, Simoncsits A, Susic S, Rahman K, Marusic L, Chen J, et al. (1994) Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO J 13(20): 4991-5001
Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G, Mari PO, van Gent DC, Chen BP, Chen DJ (2007) Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol 177(2): 219-229
van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2(3): 196-206
Vishwanatha JK, Baril EF (1990) Single-stranded-DNA-dependent ATPase from HeLa cells that stimulates DNA polymerase alpha-primase activity: purification and characterization of the ATPase. Biochemistry 29(37): 8753-8759
Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847): 607-614
Wang P, Day L, Dheekollu J, Lieberman PM (2005) A redox-sensitive cysteine in Zta is required for Epstein-Barr virus lytic cycle DNA replication. J Virol 79(21): 13298-13309
Wang Y, Li H, Tang Q, Maul GG, Yuan Y (2008) Kaposi's sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: involvement of host cellular factors. J Virol 82(6): 2867-2882
Weiss LM, Movahed LA, Warnke RA, Sklar J (1989) Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin's disease. N Engl J Med 320(8): 502-506
Wiedmer A, Wang P, Zhou J, Rennekamp AJ, Tiranti V, Zeviani M, Lieberman PM (2008) Epstein-Barr virus immediate-early protein Zta co-opts mitochondrial single-stranded DNA binding protein to promote viral and inhibit mitochondrial DNA replication. J Virol 82(9): 4647-4655
Xu P, LaVallee PA, Lin JJ, Hoidal JR (2004) Characterization of proteins binding to E-box/Ku86 sites and function of Ku86 in transcriptional regulation of the human xanthine oxidoreductase gene. J Biol Chem 279(16): 16057-16063
Yaneva M, Wen J, Ayala A, Cook R (1989) cDNA-derived amino acid sequence of the 86-kDa subunit of the Ku antigen. J Biol Chem 264(23): 13407-13411
Yates J, Warren N, Reisman D, Sugden B (1984) A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A 81(12): 3806-3810
Yates JL, Guan N (1991) Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J Virol 65(1): 483-488
Yates JL, Warren N, Sugden B (1985) Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313(6005): 812-815
Yokoyama N, Fujii K, Hirata M, Tamai K, Kiyono T, Kuzushima K, Nishiyama Y, Fujita M, Tsurumi T (1999) Assembly of the epstein-barr virus BBLF4, BSLF1 and BBLF2/3 proteins and their interactive properties. J Gen Virol 80 ( Pt 11): 2879-2887
Young LS, Rickinson AB (2004) Epstein-Barr virus: 40 years on. Nat Rev Cancer 4(10): 757-768
Zhang Q, Hong Y, Dorsky D, Holley-Guthrie E, Zalani S, Elshiekh NA, Kiehl A, Le T, Kenney S (1996) Functional and physical interactions between the Epstein-Barr virus (EBV) proteins BZLF1 and BMRF1: Effects on EBV transcription and lytic replication. J Virol 70(8): 5131-5142
zur Hausen H, O'Neill FJ, Freese UK, Hecker E (1978) Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272(5651): 373-375
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9018-
dc.description.abstractEB病毒 (Epstein-Barr virus;EBV)屬於一種人類疱疹病毒,當病毒進入溶裂期會表現出極早期基因BZLF1並轉譯出Zta蛋白質,Zta為一個多功能蛋白質,主要負責調控基因轉錄及將DNA複製相關的蛋白質聚集到複製起始點。為了探討Zta在細胞中是否與其它細胞內蛋白質結合,對EB病毒溶裂期機制造成影響,所以本研究利用His pull-down assay吸附細胞蛋白質並以MALDI-TOF進行蛋白質定序發現人類的ATP-dependent DNA helicase II Ku80會與Zta結合,接著進一步以共同免疫沉澱分析和GST-pull down證實了Zta會與Ku80在細胞內及細胞外結合並一起結合到oriLyt上,並且觀察到Zta以C端區域與Ku80的N端區域結合,也在Ku80缺陷的P3HR1細胞中觀察到EB病毒溶裂期DNA複製的下降,Ku80也會與Zta和EA-D在細胞內結合。此外,利用冷光分析發現Ku80會增加Zta的轉錄活性。綜合以上,Zta與Ku80結合後會進一步調控EB病毒溶裂期複製。zh_TW
dc.description.abstractEpstein-Barr virus (EBV) expresses immediate-early transcription factor Zta during the lytic cycle. Zta is a multifunctional protein that regulates gene transcription and recruits a replication complex at the lytic viral origin of replication. To identify cellular proteins that associate with Zta, this study performed His-Zta pull down analysis to precipitate cellular proteins and identified by MALDI-TOF a human ATP-dependent DNA helicase II Ku80 that interacts with Zta. Furthermore, Zta interacts with Ku80 in vivo and in vitro, forming a complex that binds to ZREs at the oriLyt. Furthermore, depleting Ku80 reduces EBV lytic DNA replication, showing the involvement of Ku80 in EBV lytic development. This study shows that the C-terminal domain of Zta interacts with the N- and M-domain of Ku80. Ku80 and Zta also interact with BMRF1 polymerase processivity factor, suggesting that Ku80 facilitates viral lytic DNA replication . In addition, Ku80 enhances the transcriptional activity of Zta. Taken together, this study found Ku80 involves in EBV lytic replication through an interaction with Zta.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:06:43Z (GMT). No. of bitstreams: 1
ntu-98-R96b47405-1.pdf: 1025601 bytes, checksum: a30a621ba2799f11d24ec230b058fd1c (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………… i
誌謝…………………………………………………………………………………....ii
中文摘要…………………………………………………………………………...... iii
英文摘要…………………………………………………………………………….. iv
前言……………………………………………………………………………………1
一、 EB病毒……………………………………………………………………..1
二、 EB病毒的生活史…………………………………………………………..1
三、 極早期基因BRLF1………………………………………………………...2
四、 極早期基因BZLF1…………………………………………………………3
五、 EB病毒的潛伏期DNA複製………………………………………………4
六、 EB病毒的溶裂期DNA複製………………………………………………5
七、 Ku蛋白質…………………………………………………………………...7
八、 Ku蛋白參與DNA雙股斷裂修補NHEJ路徑……………………………7
九、 Ku蛋白質與DNA轉錄的調控……………………………………………8
十、 Ku蛋白質與DNA複製的活化……………………………………………9
研究目的……………………………………………………………………………..11
實驗方法……………………………………………………………………………..12
結果…………………………………………………………………………………..20
一、 細胞內與Zta結合的蛋白質分析…………………………………………20
二、 Zta與Ku80在細胞內的結合……………………………………………..20
三、 Zta直接與Ku80結合……………………………………………………..21
四、 Zta與Ku80的結合區域分析……………………………………………..21
五、 Ku80與Zta會結合到EB病毒的溶裂期複製起始點的ZRE序列….......22
六、 Ku80與Zta會結合到EB病毒的溶裂期複製起始點 (oriLyt) ………….24
七、 Ku80與BMRF1 polymerase processivity factor在細胞內的交互作用…25
八、 Ku80缺陷時抑制EB病毒溶裂期DNA複製…………………………….25
九、 Ku80活化EB病毒的DNA複製起始…………………………………….26
十、 Ku80強化Zta轉錄因子的活性…………………………………………..27
討論………………………………………………………………….. ……………...29
參考文獻…………………………………………………………………….……….50
附錄…………………………………………………………………………………..64
圖目錄………………………………………………………………………………..35
圖 1:EB病毒的生活史………………………………………………………...35
圖 2:EB病毒的溶裂期………………………………………………………...36
圖 3:EB病毒的溶裂期DNA複製起始區域的序列…………………………..37
圖 4:細胞內與Zta結合的蛋白質……………………………………………...38
圖 5:Zta與Ku80在細胞內的結合…………………………………………….39
圖 6:Zta與Ku80為直接結合………………………………………………….40
圖 7:Ku80與Zta的結合區域分析…………………………………………….41
圖 8:Ku80與Zta會結合到oriLyt的ZRE序列上……………………………..42
圖 9:Ku80與Zta形成複合體結合到oriLyt上………………………………..43
圖 10:Ku80與Zta結合到oriLyt上……………………………………………44
圖 11:Ku80與Zta和BMRF1在細胞內的結合……………………………….45
圖 12:Ku80缺陷的細胞導致EB病毒溶裂期DNA複製量的下降…………..46
圖 13:Ku80促進Zta活化EB病毒溶裂複製的能力………………………….47
圖 14:Ku80促進Zta的轉錄活性能力………………………………………...48
圖15:Ku80與Zta對pBHLF1和pRp-ZRE的影響…………………………….49
表目錄……………………………………………………………………………......64
附表…………………………………………………………………………….. 64
dc.language.isozh-TW
dc.titleKu80與EB病毒Zta蛋白質的功能研究zh_TW
dc.titleKu80 and the Functions of Zta of Epstein-Barr Virusen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉世東,陳美如,張堯,張世宗
dc.subject.keyword人類疱,疹病毒第四型,Zta,Ku80,溶裂期,DNA複製,zh_TW
dc.subject.keywordEpstein-barr virus,Zta,Ku80,Lytic cycle,DNA replication,en
dc.relation.page66
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-08-11
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept微生物與生化學研究所zh_TW
Appears in Collections:微生物學科所

Files in This Item:
File SizeFormat 
ntu-98-1.pdf1 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved