請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90129完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施上粟 | zh_TW |
| dc.contributor.advisor | Shang-Shu Shih | en |
| dc.contributor.author | 梁曉鄢 | zh_TW |
| dc.contributor.author | Hsiao-Yen Liang | en |
| dc.date.accessioned | 2023-09-22T17:32:02Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | Belliard J. P.;Toffolon M.;Carniello L.;D'Alpaos A. (2015). An ecogeomorphic model of tidal channel initiation and elaboration in progressive marsh accretional contexts. Journal of Geophysical Research: Earth Surface, 120(6), 1040-1064.
Boon J. D. (1975). Tidal Discharge Asymmetry in a Salt Marsh Drainage System. Limnology and Oceanography, 20(1), 71-80. D’Alpaos A.;Lanzoni S.;Mudd S. M.;Fagherazzi S. (1990). Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuarine, Coastal and Shelf Science, 69(3-4), 311-324. Diplas P. (1990). Characteristics of Self-Formed Straight Channels. Journal of Hydraulic Engineering, 116(5). 707-728. Einstein H. A.;Krone R. B. (1962). Experiments to determine modes of cohesive sediment transport in salt water. Journal of Geophysical Research, 67(4), 1451-1461. Engelund F. (1966). Hydraulic resistance of alluvial streams. Journal of the Hydraulics Division, 92(2), 315-326. Fagherazzi S.;Furbish D. J. (2001). On the shape and widening of salt marsh creeks. Journal of Geophysical Research: Oceans, 106(C1), 991-1003. Faunce C. H.;Serafy J. E. (2006). Mangroves as fish habitat: 50 years of field studies. Marine Ecology Progress Series, 318. 1-18. Freeman G. E.;Rahmeyer W. H.;Copeland R. R. (2000). Determination of Resistance Due to Shrubs and Woody Vegetation: US Army Corps of Engineers French J. R.;Clifford N. J.;Spencer T. (1993). High frequency flow and suspended sediment measurements in a tidal wetland channel: Wiley Garofalo D. (1980). The influence of wetland vegetation on tidal stream channel migration and morphology. Estuaries, 3(4), 258-270. Kandiah A.;Arulanandan K. (1974). Hydraulic erosion of cohesive soils: University of California,Davis.60-68 Lanzoni S.;Seminara G. (1998). On tide propagation in convergent estuaries. Journal of Geophysical Research: Oceans, 103(C13), 30793-30812. Leopold L. B.;Collins J. N.;Collins L. M. (1993). Hydrology of some tidal channels in estuarine marshland near San Francisco. CATENA, 20(5), 469-493. Lin H. J.;Shih S. S. (2015). Impacts and mitigation on the downstream ecosystems by the operation of flood control and sediment effluent of the Shimen Reservoir. Water Resources Agency press, Taipei City, Taiwan. Lundgren H.;Jonsson I. G. (1964). Shear and Velocity Distribution in Shallow Channels. Journal of the Hydraulics Division, 90(1). 1-21. Mudd S. M.;Fagherazzi S.;Morris J. T.;Furbish D. J. (2004). Flow, Sedimentation, and Biomass Production on a Vegetated Salt Marsh in South Carolina: Toward a Predictive Model of Marsh Morphologic and Ecologic Evolution. The Ecogeomorphology of Tidal Marshes, 59. 165-188. Mynett A.;Baptist M.;Babovic V.;Keijzer M. (2007). On inducing equations for vegetation resistance. Journal of Hydraulic Research, 45, 435-450. Nagelkerken I.;Blaber S. J. M.;Bouillon S.;Green P.;Haywood M.;Kirton L. G.;Meynecke J. O.;Pawlik J.;Penrose H. M.;Sasekumar A.;Somerfield P. J. (2008). The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 89(2), 155-185. Nepf H. M. (1999). Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research, 35, 479-489. Palmer M. R.;Nepf H. M.;Pettersson T. J. R.;Ackerman J. D. (2004). Observations of particle capture on a cylindrical collector: Implications for particle accumulation and removal in aquatic systems. Limnology and Oceanography, 49(1), 76-85. Pizzuto J. E. (1990). Numerical simulation of gravel river widening. Water Resources Research, 26(9), 1971-1980. Press W. H.;Teukolsky S. A.;Vetterling W. T.;Flannery B. P. (2007). Numerical Recipes: The Art of Scientific Computing (3rd ed. Vol. 2.4): Cambridge University Press Pritchard D.;Hogg A. J. (2003). Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents. Journal of Geophysical Research: Oceans, 108(C10). 11-1-1-15. Randerson P. F. (1979). A simulation model of salt-marsh development and plant ecology. Saxon House.48-67 Shih S. S. (2020). Spatial Habitat Suitability Models of Mangroves with Kandelia obovata. forest, 11(4). 477. Shih S. S.;Cheng T. Y. (2022). Geomorphological dynamics of tidal channels and flats in mangrove swamps. Estuarine, Coastal and Shelf Science, 265. 107704. Shih S. S.;Hwang G. W.;Hsieh H. L.;Chen C. P.;Chen Y. C. (2015). Geomorphologic dynamics and maintenance following mudflat, creek and pond formation in an estuarine mangrove wetland. Ecological Engineering, 82, 590-595. Shih S. S.;Yang S. C.;Hwang G. W.;Adams J. B.;Lee H. Y.;Chen C. P. (2013). The salinity gradient influences on the inundation tolerance thresholds of mangrove forests. Ecological Engineering, 51, 59-65. Temmerman S.;Bouma T. J.;Koppel J. V. d.;Wal D. V. d.;Vries M. B. D.;Herman P. M. J. (2007). Vegetation causes channel erosion in a tidal landscape. 35(7). 631-634. 陳柏智. (2020). 基於自然解決方案之都市河川洪氾平原管理-以二重疏洪道為例. (碩士論文─土木工程學類). 國立臺灣大學, 台北市. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90129 | - |
| dc.description.abstract | 紅樹林是河口重要藍碳生態系統,同時具有攔截集水區來砂及陸源汙染與有機質,提供人類社會許多直接及間接的生態系統服務價值。潮溝及潮灘是紅樹林及近岸沼澤、濕地生態系統重要地景及棲地,植生分佈、水理特性、泥砂運移等複雜機制影響潮溝及潮灘的形貌差異,瞭解潮溝、潮灘和植生交互作用下的形貌變化,有助於使溼地管理決策更加完善。
本研究改良垂直二維潮溝及潮灘演化模式,模式中包含三個模組「水動力」、「河川輸砂」、「植生(紅樹林)」,透過水動力模式中建立植生地形,藉以反應紅樹林在灘地上阻礙流動的概念,並透過模式中連續方程式和動量方程式,比對流量值,以此迭代計算得到能量坡度;再進入輸砂模式中,修正河流漲退潮所帶來的泥砂濃度差異,結合水動力所計算出的參數值,算出泥砂沉積、侵蝕濃度。在紅樹林模式中,透過界定灘地、溝地有無植生下的流速、粗糙度等差異性,計算得到生物量,並計算紅樹林捕獲泥砂的沉積速率。最後,將所求得參數代入Exner方程式,得到地形、地貌及濕地高程變化。 演化模式模擬結果顯示,在長時間尺度模擬下,模式能夠有效反應沼澤、紅樹林潮溝發展的前、中、後期階段,呈現潮溝自近乎於平床的灘地形貌,在潮汐及河川水流共同作用下出現下刷、拓寬,再回淤、束縮的過程。另外,本研究亦收集植生水槽實驗資料驗證水動力及植生模組,透過設定斷面植生阻礙物,並提供植生阻力的等效參數,可重現實驗水槽的水面剖線,顯示水動力及植生模式具備可靠性;也收集淡水河社子島紅樹林4處潮溝斷面地形進行輸砂模組驗證,透過模式中灘地、溝地的界定,對於灘地過度淤積的模擬得到良好的改善。本研究也進行模式參數敏感度分析,藉以更深入瞭解潮溝在地貌演化下之機制。 | zh_TW |
| dc.description.abstract | Mangrove forests are crucial blue carbon ecosystems in estuaries, providing numerous direct and indirect ecosystem services of great value to human societies. They intercept sediment land-based pollutants, and organic matter, from the watershed, while serving as essential habitats and landscape features within the mangrove and nearshore marsh wetland ecosystems. The morphology of tidal channels and tidal flats, influenced by complex mechanisms such as vegetation distribution, hydraulic characteristics, and sediment transport, plays a significant role. Understanding the morphological changes resulting from the interactions between tidal channels, tidal flats, and vegetation can greatly enhance wetland management decisions.
This study has improved a vertical two-dimensional model for the evolution of tidal channels and tidal flats. The model consists of three modules: hydrodynamics, sediment transport, and vegetation (mangrove). By incorporating vegetation topography into the hydrodynamics module, the model is able to capture the concept of vegetation hindering flow on tidal flats. This study utilizes the continuity and momentum equations in the model to iteratively calculate energy slopes by comparing investigated flow values. The sediment transport module adjusts the sediment concentration differences caused by tidal current and river flows, incorporating parameters calculated from the hydrodynamics module to determine the critical sediment deposition and erosion. In the mangrove module, we calculate biomass by considering flow velocity and roughness differences between vegetated and unvegetated areas, and estimate the sediment trapping rate by mangroves. Finally, the obtained parameters are used in the Exner equation to simulate changes in topography, geomorphology, and wetland elevation. The simulation results of the evolution model demonstrate its effectiveness in capturing the early, middle, and final stages of mangrove tidal channel development over long-term scales. It shows the gradual development of tidal channels from nearly flat beds, undergoing scouring, widening, subsequent infilling, and constriction processes under the combined effects of tides and river flow. Additionally, this study collected data from vegetation flume experiments from Freeman et al. (2000) to validate the hydrodynamics and vegetation modules. By setting up vegetation obstacles in the flume and providing equivalent parameters for vegetation resistance, the model successfully reproduces the water surface profiles observed in the experiments, demonstrating the reliability of the hydrodynamics and vegetation modules. We also collected data from four tidal channel cross-sections in the Shezi Island mangrove in the Tanshuei River to validate wetland morphological dynamics. By defining tidal flats and channels in the model, we significantly improved in simulating excessive sediment accumulation on the intertidal flats. This study also conducted a sensitivity analysis of model parameters to gain deeper insights into tidal channel geomorphic evolution mechanisms. This study offers a quantitative tool for effectively maintaining tidal channels and tidal flats that may enhance mangrove swamps’ integrated and adaptive management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:32:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:32:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試審定書 I
誌謝 II 中文摘要 III ABSTRACT IV 目錄 VI 圖目錄 VIII 表目錄 XI 符號表 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 論文架構 3 第二章 文獻回顧 4 2.1 DIPLAS及PIZZUTO之渠道形塑理論與數值方法 4 2.2 FAGHERAZZI 和 FURBISH 初期渠道模型 5 2.3 D’ALPLAO及MUDD之潮溝植生模型 6 第三章 研究方法 11 3.1 研究區域 11 3.2 模式理論 12 3.2.1 水動力模式 14 3.2.2 輸砂模式 23 3.2.3 紅樹林模式 28 3.3 數值方法 30 3.3.1 Thomas Algoritm 30 3.3.2 Central Finite Difference 33 第四章 結果與討論 34 4.1 潮溝及潮灘形貌演化 34 4.1.1 斷面模擬之初始條件 34 4.1.2 模擬結果與分析 36 4.2 模式驗證 45 4.2.1 Freeman實驗驗證 45 4.2.2 實測地形驗證 54 4.3 敏感度分析 65 第五章 結論與建議 72 參考文獻 74 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 泥砂 | zh_TW |
| dc.subject | 植生 | zh_TW |
| dc.subject | 潮灘 | zh_TW |
| dc.subject | 潮溝 | zh_TW |
| dc.subject | 紅樹林 | zh_TW |
| dc.subject | tidal flat | en |
| dc.subject | tidal channel | en |
| dc.subject | mangrove | en |
| dc.subject | sediment | en |
| dc.subject | vegetation | en |
| dc.title | 紅樹林復育及皆伐對潮灘及潮溝形貌演變之影響 | zh_TW |
| dc.title | Nexus of mangrove colonization on hydrodynamics and sedimentation for tidal flat and creek evolution | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡明哲;游景雲 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Che Hu;Gene Jiing-Yun You | en |
| dc.subject.keyword | 潮溝,潮灘,紅樹林,植生,泥砂, | zh_TW |
| dc.subject.keyword | tidal channel,tidal flat,mangrove,vegetation,sediment, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202302208 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 3.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
