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Abstract

Mangrove forests are crucial blue carbon ecosystems in estuaries, providing
numerous direct and indirect ecosystem services of great value to human societies. They
intercept sediment land-based pollutants, and organic matter, from the watershed, while
serving as essential habitats and landscape features within the mangrove and nearshore
marsh wetland ecosystems. The morphology of tidal channels and tidal flats, influenced
by complex mechanisms such as vegetation distribution, hydraulic characteristics, and
sediment transport, plays a significant role. Understanding the morphological changes
resulting from the interactions between tidal channels, tidal flats, and vegetation can
greatly enhance wetland management decisions.

This study has improved a vertical two-dimensional model for the evolution of
tidal channels and tidal flats. The model consists of three modules: hydrodynamics,
sediment transport, and vegetation (mangrove). By incorporating vegetation
topography into the hydrodynamics module, the model is able to capture the concept of
vegetation hindering flow on tidal flats. This study utilizes the continuity and
momentum equations in the model to iteratively calculate energy slopes by comparing
investigated flow values. The sediment transport module adjusts the sediment
concentration differences caused by tidal current and river flows, incorporating
parameters calculated from the hydrodynamics module to determine the critical
sediment deposition and erosion. In the mangrove module, we calculate biomass by
considering flow velocity and roughness differences between vegetated and
unvegetated areas, and estimate the sediment trapping rate by mangroves. Finally, the
obtained parameters are used in the Exner equation to simulate changes in topography,

geomorphology, and wetland elevation.
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The simulation results of the evolution model demonstrate its effectiveness in
capturing the early, middle, and final stages of mangrove tidal channel development
over long-term scales. It shows the gradual development of tidal channels from nearly
flat beds, undergoing scouring, widening, subsequent infilling, and constriction
processes under the combined effects of tides and river flow. Additionally, this study
collected data from vegetation flume experiments from Freeman et al. (2000) to validate
the hydrodynamics and vegetation modules. By setting up vegetation obstacles in the
flume and providing equivalent parameters for vegetation resistance, the model
successfully reproduces the water surface profiles observed in the experiments,
demonstrating the reliability of the hydrodynamics and vegetation modules. We also
collected data from four tidal channel cross-sections in the Shezi Island mangrove in
the Tanshuei River to validate wetland morphological dynamics. By defining tidal flats
and channels in the model, we significantly improved in simulating excessive sediment
accumulation on the intertidal flats. This study also conducted a sensitivity analysis of
model parameters to gain deeper insights into tidal channel geomorphic evolution
mechanisms. This study offers a quantitative tool for effectively maintaining tidal
channels and tidal flats that may enhance mangrove swamps’ integrated and adaptive
management.

Keywords: tidal channel, tidal flat, mangrove, vegetation, sediment
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6 w7+ Peg AAE B BTG i 7 R8s T B+ PP L P P B R A - Py
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D’Alpaos et al.(1990) -t 5 & % P > By jF it A= 4o FE P o Jide e 2P
ERBRBE R A E PR T W AR BB ]
gl
Wi H T HEg2 ) o ERE R FW R AL B b IR E S

A

NENN

Rl

I

CRRGRAATIRIEY AR - BB AL REET 2ok - R

hlREARLY CHFE USRS A L E TR TR AT DRI RE I
Bt L Aot c At RERE RET AT REFEREEP I NE
TUARATIE B o AR E O WEARYANE R HIRRE TR cBI2-T T

F3E i R {eiR AR E 0 2 Garofalo (1980) ~ Leopold etal. (1993) 7.4 #icdy » 3+ 5

BB D DA o Befs > BRI 2 -8 K E BN E o ETe B fFL R
M AR P > AnRaEE KoY T SR 0 e R T > T S0 R 2 e
Leopold et al. (1993)¥F Pl#cdp L% g & — R 5 Flpb > 7 ST & e %

RnEIuEAR O GoE U ARERFF R R ETRPEIRRAR ] 0 L o

Lg R G IR o AT R AP HEE RIS E BB .
a . 10°
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25l o. / cross section
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o
®
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7 RIS LT 05T HAT 1756 T2 2 < itk D R pE o 412 50
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3.2 BN EH%
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it $fg et ko ik odnd mE s gd P IR
PRS0 BoRE 4 BN R AR T4 R S B WSy

o FF B AN QR E AN QLE R LR e =107 jzar e
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WAp b P EED N R ¢ § ERHRE O 0 BT s B A
AHHT 9% Rhy o BB AT B Qog t Qur 0 B2 Mt iR F] Sl
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07 T
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] L, HEEE 58
4 ;”gizfﬁi?ge RILEREEC
.
&
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3.2.1 7R# 3 50

i 7 o E (tidal flow discharge)

AR PR chip ) 8B B AF fe e Kk B4 {rdi A (tapered shape)iB

sy s 2

i Ehefoin 1t 3w € & +h 4 4 (Lanzoni and Seminara(1998) - & 7 L&
%7 o

v qilfﬂ’“_r “”"/fr Az /Fr Hren % C B - lsz?—%f etz o 4 giﬁfﬁﬁf_&_
(tidal discharge)k 3 4 Hc F] 5 cficsV o 2 B enficdi A= 4o iE 2 8 2370 T b e g o
Fode T HAF R MY T 39 (= (MLWL) » 3% % (basin) B e 5 & B
ERLTOERS -

FABME L PR Rk P T AL R R s o BR
w7 ok 348 i (quasi-static) - & B2 T T o SR BT ERPERF R ()T Sn B ¥
B ES AT 4N 15 d Boon(1975)3 41 e 2 A id 2 A5 R
foitep s g AN > AR AR T g2 F B R T (y o)l k¥
LR ST R 07 SN AN N ATE S S L SE N T K
Tk o - E_B %P ¥i(tidal flat)fo i i (tidal channel) g Ff R B 0 TR g fFA
THA R A KB A $6 0 - L8R (xz 86 )fook T(y 2 )il ke 4 A
?‘f %oAp > ?Fﬁis?lﬁé AR B ETH & B TG ook = E_p d R 6 (free water surface)

BR- K AT G S BK RN S B R 1R R S

8 AN o BB T amLWﬁ%uwﬁﬁﬁ(ﬁﬁkuﬁa%WM&@y
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VO _d
QW) = —= = = (D)

)
V<l
—

A@FEFEFRLTHd BRI B IEF s 22Kk 6 f VOELP K
B Rt > DDA e £E gepr T 32 RET ¥ h(t) —zp (D)3 & # 3] h(b)

Frzp (O A B % 4 2% chgaph K =2 ¥ 253 42

Rk 5 & 4 (bed shear stress)

T4 gt B 1245 Pizzuto(1990) 0 H#k 72 £ 7 ' (gravel river) B if 35 B8 41
TR - A KB A Y (gently curved) i £ R AL AT AR ey 4Y

A 3 4 4 i (shear stress distribution) » F 4 123 23HE ¢

dA d (Pn
T= pgng + d_p T,dn

)|
bl

2

H ¢ 18 % &4 (local boundary shear stress): p -k & & »SeH_iv £ 8 & (energy
slope), dAE_Z-% & & Fl-k o 0l K476 > dpfrip HdAZ &% > 4o 3-3 2 7
LW on s EE AR E R Dy A KK PR G RS T, £dp iz R e b IE
AT TP B4 G A i (turbulence) 31 A2 0k 8T P(local downstream)dp - cH
B4 3% 2 £v: = = jn#s(secondary currents)ends £ @R o o *F K R4 F
(curvature) -] e R T o A 7 RKfEN 25 1, F 4 &fE o 51 * Lundgren and

Jonsson(1964) ¢ * - & & @?](gradient transport) ¥t 3 & 2. BK ¢
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n T h Ot

o & _jfa Ak Uk fic(eddy viscosity) » uE T i 0 §E £ E ninz B AR
A h' B ArEip bl oz B R € S8ce H8cE % ¢ 0 1945 Lundgren and Jonsson(1964)

Bk BRIFAF GEA RS T BEd T AT Sk T

D, — k,

oc=xu"(n—kg)(1 -

|
il
()}

u= u—*ln(i)
Kk kg
KE_5+ ¥ #i(Von-karmon constant » 3% ¥_5 0.4) > kK Hsfe k&g A& > u* £ 7 4
@R o 4238 52 Bk A D Alpaos et al.(1990) 1 F %57 » B p (TR d F
R IR o Fak s o

1245 Pizzuto(1990) » ¥ 4 7 ff i 5% 6> H ¢ B gt i

{\_
-
FR

)

~m=y
2]
B

FTREPERGEOBERGEFE ST FERAFHEIE S0 G

26, 0 RV BEK S log g o F R ER LGN 8 W hlrg Ay HP

v

Xp o PHERTE Wy A PAETRE L THEAIRNT A E m A RE 4 BN

(NI I A = SR T ’;!E,L_;J'J‘J, °

dA dt 6
T=peSigt —(
Pn 1 (M —ks) ;87
| 30k - GG

Wp
T = pgSeD; xp, = 17
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f 3 A e

Bokde 4 BaN P 4 M EB E A B A5 HuE 2 Ao ] 3-4 47T o IR AR
AR e 7 ARG RTA SRR R e R AT R

s sk * Shihetal. (2013)%73% & F A4 3-1 %777 o B ok s # B 420 £

o

Flgs P2 # RS el ke A L BELFE A E 0 KE

HORLH & Bl e

Marsh and Tree

treelt it
4 il -_— M

Elevation(m)

I I I I | I I
40 -30 -20 -10 0 10 20 30 40

x-axis(m)

Bl 3-4 iy FiEe A7 3R

% 3-1 i#HkA # % #2(Shih et al.,2013)

PR OH Lowest elevation(m) Highest elevation(m)
B & Guandu 0.35 1.3
A5+ & Shezi 0.41 1.2
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K B

RITFE B AR S Ao B 3-50 152 11% Fagherazzi and Furbish(2001) > 4= 45 %
- A ARLETG 0 P EFG LTSN BpE Y L ek T 7 v (incision) 0 i E
i € fif Y B AR 4 35 0 8 4 Pizzuto(1990) » 3%k B 4 8 A5 2k 2 pE 7 T EE

(time-step) » L#-5% 7A@ B i > L 5B S P B %RY 2 ke B 0

-

¥ OTE kS S W i AR 5 202 0§ UL A % (central finite difference) it B

#1338 9 = ¥ 4 &L (tridiagonal matrix) > 1 * ;% 10 3= B #7/% & % (Thomas

T3

T4 RNTS SRR RS TESE AR e F0 A

algorithm)f# ¢

A

SEREECE SO A I P SRRt AR S LA

BB AEGSHE kB A B EF SR FLRETAE107C L] 301070

RO TR T E A RS | RS » DAY 0 BET - H
2L 5 o,
:
d
1 0 0 00 0\[ i
a2 b2 «¢2 0 0 0 o I £ 9
: T d
0 0 0 0 0 1 Enlj “‘1/
n
aiTi—1 + biTi + CiTijp1 = di 34 10

9 5 = ¥ & 2&'L (Tridiagonal matrix) » 7% 10 3 3 5 27/% & ;2 (Thomas
algorithm) > d >+ 3% 2 g * >t ¥%7g ¥ & 8 4 (unvegetated) % & > T ¥Ta ¢ & A=
FEZ R T R TS R FEE wAmEA fraE 2 FE O
Peni i Fpits oy § B2 DL B PR iEER Tt r§ 4 D8P ET

PR R REEe RS o de T4 LBt 69 > e

I3

Y
{

BT ERF T ER LR 60 L RS AFRLEE B E LA R
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(momentum redistribution) > % K & iTTRTHRT o F 4 o F LB R - 38 BT

PEPE > T gt S o - BERPERFEIET o M A R BT 4 ER

HEEEE DA L GG 00 Bor A R R AR e B AT B R AR 2

$f &L o

INPUT : 7k;%E, H#fE,
—— {IaSE. BEREET. -
L2

l

FEEKEEA. R
Rldp. stEREQ
(mass conservation)

ATEHET. EE. FE.
RIGHE

Q'(momentum)

l

Q-Q'<e?

NO,E TS

l YES

LISEFtEBNESS, K
e EEQd, Qe

|
RABer A KB ERIE
v

NO t=t-=next t<=T?

lvw
EXIT

B 3-5 KEHE N FE B

] 3- 5 %+ Diplas (1990) ~ Pizzuto(1990)2_ i# ¥ 2_ -k ZH5% % 5 B » % Fde ™
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(1) ok Trzée g2+ Ak FEHRBIARafF g RS
(2) 195 Pizzuto(1990)> 3+ 554 77 B S ? & L 2358 4V 6 F 4 4 %
o T > ] N L BRI R

Tit1~2Ti+Ti

o Ait1—Ai X\
Tivn = P8SF— - tB— &1
IRV IR A 30 10 A58 0 he T o

Ap? Ajr1—Aj_q Ap? ‘
—Ti—1 + 21, + (% - 1) Tipq = pgsf%% ;12
FAEAELN O o T EEFREEN D B P LT o™
a; = —1,
bi = 2,
Ap?
a=(F-1)
_ AA Ap? .
di = pgSo 5 &13

(3) i * Thomas ;% & /& #-Ff2 9 4 2. = & &L (58 9) & #(invert) 5 T 4
A FEFERE > MASEFREFZRA PSR R T REHE D S

SRR EQ M PFR - A BEHARSE X R AN L QB

lt“b

AR

NQ A B F R MSE IR AL L £ SRS Jrar ) RS
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18 4 Jni# & % (velocity distribution)

PEG PR AT T Y R E RTe F EATA feo ROt Y S
EEES RHBILE A BT S HEE EG 0 E ik B Engelund(1966)in A28 73+ 5 o
He o g fad R 0 3 Nepf(1999)F %4 7 % % k3= Darcy-Weisbach
aiPERE R ¢ AT % ek T fik(friction coefficient) e tZ AT F P o BHE R pE 4 ik
(bulk plant drag coefficient)f-& H =48 4% cr 4L #2424 & ## (projected plant area per
volume,ag) # & % (stem diameter, dg) ek #F4p 5 B B > H P 2 B H 4§

(biomass)F B ¥ > %% § Mudd et al.(2004) > ¢ A {5 3t
CD = (XCDb + CDO ;\: 11
He o CpoailFiad T4 fhlic HE 5 0718 b £ 4 2 4 £ (biomass) -

Ocp » ¥ & Sl @422 & 2 124 (s 'fﬁ BB B 5 0224 - £ * Darcy-

Weisbach jiw FERf % > 358 H B i dcf -

f = 4CpagD & 12

ags B MM R 6 i 0 DEKIE « FE Pt S 0 v @k

HFALA PETR R A L 0 &g TIRETE S ST

8 13
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BB A O et 2 gE A ke o € 5 0 E A R AL > Mynett
et al.(2007)#& &1 § woRiRE o MR A R EEE 353 IR R PR Y 2 HET

oA BTG RF(RE)EF A A T ARE > M5 13 ¢ T

MR RS REN S GRS - R AN R S B
2 0+ o
V=S

k& % % & (backwater curve)

kgAY P REg RN A B R RN R B A B 5 e
acts € 17— B et enSeiE o 1 * 38 (B 5|2 S¢ie > 1 Freeman etal.(2000)® #73%
2ol RARIEE N TN 14 EREINC B kg M B R

Rk i § AR RER & wp

dy So — S¢
e =\
dx (1.0 - Frz) # 14

dy/ dx Tk & BB ¥ %1 > Sy R R B HL A 0 SpEok s 4 Wi k2 & i
d it 28K (energy slope) » Spi ¥ M E BN R E 0 ALY SpE2Z B X
AL B lEent 2 d BE A KRG PR F AR g€ 4 eid B VS

Erainig o 1Y 153 B I

Y
\/E ;v 15
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3.2.2 ﬁe?]l’ﬁ ;5

Exner * #% ;' (Exner equation)

AT 3 BRK & I 2F #E (cohesive)ik #) 0 1245 D’ Alpaos etal.(1990) - & &

WAL BT R S AR o] Exner B AR A S 4250 20 Y

BE AR HA - Qa Qe b FHA (T TE TS TG 2 F AR
towd 16 AT

aZb .
(1_}\)W:Qd_Qe ;16

BP ooz s B AR AR NS R I F (porosity) © Qg e SRR F 0 Hd Qg
Qap ~Qap & 2 MHEF B ¥ Qusm B ? MIFE NV ITMF Qe s LB EAT
RGN feRAFEFE w7 2R F P F 3 5 (sediment mass exchange

rate per unit area) °

R Ry ITAR R

%+ B D’Alpaosetal.(1990) > it & K> 7 4 g7 iR & dut i

Wl 4ot

Q4 = Qgs + Qat + Qap 5820

H ¥ QqsAd ik )it (settling) 5| A2 i F 5 o Qqe H1E 24 Tk (canopy) F] f(trap)
FRyiE S AT S o @ QgpAd 4E 24 42k 8 42 & (rthizomes)ig = 75 4 4 & 5
(organic productionrate) » % %75 X F {2 i & > BIQqe > Qap FHEL 2 31 A2 it i 48
ME R e it F 2 PEFRT o Que R ETH AT A8 KR 57 B E Qe

Einstein and Krone(1962)~ ;2 » T3¢ 17 :
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T
Qas = wsCp (1 - é);ro <Tq 217

He owg i mtH# B QARAT RS I BRFFHBELE DT RS T Ao

CobfRFRERER L BERBE P WP o

AT A I € R el R R 0 A AN B andf K (trap) ik
Fypied > 4g 4 4 ¢ IR 4 I (turbulence)i > 0 Nepf(1999)F S F £ 4 & & = /4
o B 5RR5 o French et al.(1993)% 14 i 28 it ff 4~ @,ﬁ% £ F]#% o Pritchard
and Hogg(2003)® f& ik &) @ A AP 2 P > Adpid i BIFEPER
ARYZ RLE A AR Ry A 2 A aE R Sl e Bl R B A e BT
RIFFHFHFET RAWERETERT o 2ok a5 11t o 7

e RO B 2% RN 2 K (accretion) T 0 B B AR € B ABIT T 153
HEMHWL) e M g %20 R EFfoREFADERES T
R HAER £ RCSRINR 2 IR FIREE > % Palmeretal.(2004) >

R IR EF Qqe R T 5 ¢

Qqt = Cpuyndsnghg ;22

Uy s 72 Tamd s o onad s dom B MEE I ong s ¥ =0 AT

AT R s ERAME TR R o 40 BT R TS 18
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Tyds., d X178
n = oy ()P ;

B¢ oo dpEE & o] o vE S B AR Tk dic(kinematic viscosity) 1 oy ~ By Y v EE&
Glce Bfs 0 3 PG B2 A FQgp ¥ M 134% Randerson(1979) ¢ 19 A7k 412

Ny e
Al A

b ;¥ 19

Qab = Qano

bmax

H P o bpa R 2 PR bt B Qpod R Ui I WIS Tl e
FEL O EEF RSP ARBASY AT R E AR A AL AT P K

IRV TEEY LEYCEE TS I VRS SN P Iy

. I 2 ix
SR AR Y

R R B 32 B ® F % (consolidated) s iR T 0 # *  Kandiah and

Arulanandan(1974) » 3£ =k 7) &4 > 5V B TR

To — Te
Qe = Qeo H(ty — Te) 3V 20
HBHY 5 Qeon ZAGE BARFEE ~BARZ 2 PP E NGk T 1oL AR
P4 o2 A EAT R4 o HL Heavidise Si#k » §170— T >0 » H=

10 PR AR PR » S4F 2852 o FTo—Te<OF H=0-
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LR IR ¥l A

dANEEACPMETP S 2 A PR ELORIRY 3 o Bk ArRPE R
FRERIRY PILEERR L P EER > A P Y SRR R R R
Fa R e RRERBT TR 3-6- B 3-7 B 3-8 BBEREER
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oy 1 3 s | itial CD
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e
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3.2.3 G AHREN

1295 Shihetal.(2013) > t£.2 4= f&-k & 5 (Kandelia obovata) t-7 Ir B 3%
R fi%lﬁ]ﬁr"‘? '+ B (Wazwei) &3 5 0.8-1.64 = = > % [f] (Zhuwei ) jB#
% 0.73-1.41 == » 43 (Shezi) /&¥ % 041-12 =% o @ kA (Guandu) &
B S fEend R G 0.35-1.3 2 ¢ o Shih(2020) ¢ (4 $ 3 A BT 0 i

BEhehT 3 B X5 5.23+£1.92 58 5 3975 5 8.10+£3.87 f

2t 7k 5 Shih(2020)F] * HOBO -k f3* se 47 -k jp efrk 8 v % o 3747 3
i * Weibull = j2 &k % &7 oK izehid JOIE 5 o 1995 K 25edk > § 5 4 ] & 0.45-
221 K 2. B> T3 @i aTae 23 14K THMPEEN5E-085 K %1
Beh PBE P T A 221 F > MARh #HE Okt MERE

B
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