Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90122
標題: 基於熱影像視覺車流資料採集之電動車污染排放分析
ELECTRIC VEHICLE EMISSION ANALYSIS THROUGH THERMAL IMAGE-BASED VEHICLE CLASSIFICATION
作者: 廖浚評
Chun-Ping Liao
指導教授: 陳柏華
Albert Y. Chen
關鍵字: 轉移學習,深度學習,空氣污染,污染物,電動車,熱成像,物體識別,
transfer learning,deep learning,object detection,thermal imaging,electric vehicle,air pollution,pollutant,
出版年 : 2023
學位: 碩士
摘要: 城市地區空氣污染水平的上升已成為許多研究的焦點,因其對人口健康的不良影響。道路上的車輛排放被確認為污染的主要來源之一。許多國家提出將車輛完全電動化作為減少道路污染的措施,然而,電動車(EVs)相較於傳統車輛對污染的實際影響仍然不確定。因此,開發一種準確區分道路上的EVs的模型可以使我們更好地了解EVs對道路污染的影響。
由於EVs和傳統車輛在外觀上沒有顯著差異,基於可見光的目標檢測方法非常不可靠。然而,熱成像技術可以準確區分這兩種車輛之間的差異。
本研究提出了一種從深度學習模型和我們收集的熱數據中進行轉移學習的方法。特別地,我們使用車輛檢測模型計算不同類型車輛的比例,並應用車輛汙染排放分析來分析EVs, EMs 對環境的汙染。
這項研究可應用於評估個人對排放物的暴露及相關健康影響。這項工作還提供了一種可靠的方法,使用熱成像技術區分道路上的EVs和傳統車輛,並可擴展到識別其他類型的EVs,如電動摩托車(EMs)、電動巴士和電動卡車。提取的數據預計還可在環境分析、交通控制、智慧城市和其他相關研究領域中提供支援。
The increasing level of air pollution in urban areas has become a focus of many studies due to its detrimental impact on the health of the population. Vehicular emissions on roads have been identified as one of the primary sources of pollution. Numerous countries have proposed the complete electrification of vehicles as a measure to reduce pollution on roads; however, the actual impact of Electric Vehicles (EVs) versus conventional vehicles on pollution remains uncertain. Therefore, developing an accurate model to distinguish EVs on roads can enable us to better understand the impact of EVs on road pollution.
Since EVs and conventional vehicles have no significant visual differences, visible light-based object detection is highly unreliable. However, thermal imaging can accurately distinguish the differences among these two types of cars.
This study presents a transfer learning approach from a deep learning model and an open-source dataset with the thermal data we collected. Particularly, we count the portion of different type of cars with the car detection model and applied vehicle emission analysis to analyze the emission contribution by EVs and electric motorcycles (EM).
This study could be applied for assessment of personal exposure to emissions and related health impacts. This work also provides a reliable method for distinguishing between EVs and conventional vehicles on roads using thermal imaging, which can be extended to the identification of other types of EVs such as EMs, electric buses, and electric trucks. The extracted data is expected to also facilitate in different domains such as environmental analysis, traffic control, smart cities, and other related research.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90122
DOI: 10.6342/NTU202303841
全文授權: 同意授權(全球公開)
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf1.83 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved