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摘要: 

城市地區空氣污染水平的上升已成為許多研究的焦點，因其對人口健康的不良

影響。道路上的車輛排放被確認為污染的主要來源之一。許多國家提出將車輛

完全電動化作為減少道路污染的措施，然而，電動車（EVs）相較於傳統車輛

對污染的實際影響仍然不確定。因此，開發一種準確區分道路上的 EVs 的模型

可以使我們更好地了解 EVs 對道路污染的影響。 

由於 EVs 和傳統車輛在外觀上沒有顯著差異，基於可見光的目標檢測方法非常

不可靠。然而，熱成像技術可以準確區分這兩種車輛之間的差異。 

本研究提出了一種從深度學習模型和我們收集的熱數據中進行轉移學習的方

法。特別地，我們使用車輛檢測模型計算不同類型車輛的比例，並應用車輛汙

染排放分析來分析 EVs, EMs 對環境的汙染。 

這項研究可應用於評估個人對排放物的暴露及相關健康影響。這項工作還提供

了一種可靠的方法，使用熱成像技術區分道路上的 EVs 和傳統車輛，並可擴展

到識別其他類型的 EVs，如電動摩托車（EMs）、電動巴士和電動卡車。提取

的數據預計還可在環境分析、交通控制、智慧城市和其他相關研究領域中提供

支援。 

關鍵詞：轉移學習、深度學習、物體識別、熱成像、電動車、空氣污染、污染

物 
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Abstract:  

The increasing level of air pollution in urban areas has become a focus of many studies 

due to its detrimental impact on the health of the population. Vehicular emissions on 

roads have been identified as one of the primary sources of pollution. Numerous 

countries have proposed the complete electrification of vehicles as a measure to reduce 

pollution on roads; however, the actual impact of Electric Vehicles (EVs) versus 

conventional vehicles on pollution remains uncertain. Therefore, developing an 

accurate model to distinguish EVs on roads can enable us to better understand the 

impact of EVs on road pollution. 

 Since EVs and conventional vehicles have no significant visual differences, visible 

light-based object detection is highly unreliable. However, thermal imaging can 

accurately distinguish the differences among these two types of cars. 

 This study presents a transfer learning approach from a deep learning model and 

an open-source dataset with the thermal data we collected. Particularly, we count the 

portion of different type of cars with the car detection model and applied vehicle 

emission analysis to analyze the emission contribution by EVs and electric motorcycles 

(EM). 

 This study could be applied for assessment of personal exposure to emissions and 

related health impacts. This work also provides a reliable method for distinguishing 
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between EVs and conventional vehicles on roads using thermal imaging, which can be 

extended to the identification of other types of EVs such as EMs, electric buses, and 

electric trucks. The extracted data is expected to also facilitate in different domains such 

as environmental analysis, traffic control, smart cities, and other related research.  

 

Keywords: transfer learning, deep learning, object detection, thermal imaging, electric 

vehicle, air pollution, pollutant 

 

 

 

 

 

 

 

 

 

 

 



doi:10.6342/NTU202303841

v 

 

 

Table of Contents 

Acknowledgments ...................................................................................................... i 

摘要: .............................................................................................................................. ii 

Abstract: ....................................................................................................................... iii 

Table of Contents ........................................................................................................... v 

List of Figures ............................................................................................................... vi 

List of Table .................................................................................................................. vi 

1 Introduction ............................................................................................................ 1 

1.1 Background ........................................................................................................ 1 

1.2 Objective ............................................................................................................ 2 

1.3 Research flowchart............................................................................................. 3 

2 Literature review ..................................................................................................... 5 

2.1 EV emission on road .......................................................................................... 5 

2.2 Measurement of Vehicle Emission .................................................................... 6 

2.3 Collect traffic data.............................................................................................. 8 

2.4 Distinguish EV from other cars ......................................................................... 9 

2.5 Utilize of thermal image .................................................................................. 11 

2.6 Research gap and summery ............................................................................. 12 

3 Methodology ......................................................................................................... 13 

3.1 Traffic data collection ...................................................................................... 14 

3.1.1 Transfer learning with YOLOv7 and FLIR dataset ..................................... 14 

3.1.2 EV and EM classifier construction .............................................................. 16 

3.1.3 Vehicle counting by categories by StrongSORT ......................................... 16 

3.2 Data collection ................................................................................................. 17 

3.3 Analysis of Pollution Emission Contributions by Vehicle Types ................... 20 

4 Result .................................................................................................................... 22 

4.1 Model construction .......................................................................................... 22 

4.2 Trace model and vehicle counting model Performance Evaluation and 

Validation ..................................................................................................................... 30 

4.3 Analysis of Pollution Emission Contributions by Vehicle Types ................... 33 

5 Conclusion ............................................................................................................ 36 

5.1 Contribution ..................................................................................................... 36 

5.1.1 EV and EM classifier ................................................................................... 36 

5.1.2 Analysis of Pollution Emission Contributions by Vehicle Types ............... 37 



doi:10.6342/NTU202303841

vi 

 

5.2 Limitation ......................................................................................................... 39 

5.3 Future work ...................................................................................................... 39 

6 Reference .............................................................................................................. 40 

 

List of Figures 

Figure 1- 1The Flowchart of the Work .......................................................... 4 

   

Figure 4- 1 IR camera Xi 400 ...................................................................... 22 

Figure 4- 2 Example of Thermal image of New car and Old car ................ 24 

Figure 4- 3 Example of Thermal Image of Vehicle operating condition ..... 24 

Figure 4- 4 Example of Thermal Image of Cold Car ................................... 25 

Figure 4- 5 Example of Thermal Image of EV ............................................ 26 

Figure 4- 6 Example of Thermal Image of Car ............................................ 27 

Figure 4- 7 Example of Thermal Image of EM ........................................... 28 

Figure 4- 8 Example of Thermal Image of Motor ....................................... 28 

Figure 4- 9 Site for Model evaluation .......................................................... 30 

Figure 4- 10 Site for Pollution Emission ..................................................... 32 

Figure 4- 11 Result of analysis of Pollution Emission of NOx, NO, O3, CO, 

CO2 ....................................................................................................... 35 

Figure 4- 12 Result of analysis of Pollution Emission of NMHC, CH4, PM1, 

CPN ...................................................................................................... 36 

 

List of Table 

Table 3- 1 Measurement Time Resolution and Unit .................................... 19 

   

Table 4- 1 Training data detail of EV and Car............................................. 29 

Table 4- 2 Training data detail of EM Motor .............................................. 29 

Table 4- 3 Result of model evaluation on June 2......................................... 31 

Table 4- 4 Result of model evaluation on June 6 ........................................ 31 

Table 4- 5 Result of model evaluation on June 7......................................... 32 

 

file:///C:/Users/paddy/Desktop/NTU_course/Meeting/論文here/定稿/master_thesis.docx%23_Toc142653399
file:///C:/Users/paddy/Desktop/NTU_course/Meeting/論文here/定稿/master_thesis.docx%23_Toc142653401


doi:10.6342/NTU202303841

1 

 

 

1 Introduction 

The purpose of this study is twofold: to construct a classification model for EMs 

and EVs, and to analyze the emissions from EMs and EVs. This chapter begins by 

providing the research background and motivation behind the study. Next, the objective 

of the study is introduced. The work flowchart is presented in the third section, outlining 

the step-by-step process of the study. 

1.1 Background 

Air pollution has been considered a severe environmental problem recently. 

Besides climate change [1], air pollution exposure is also harmful to the human health 

[2]. In the field of transportation, we focus on the air pollution generated by vehicles, 

especially the pollution generated by vehicles on roads, which directly impacts people 

in proximity to the transportation network. For example, long-term health of drivers, 

pedestrians, and even residents and business owners and customers near the roads could 

be affected. 

 The electrification of transportation is a global trend, with many leading 

organizations and countries proposing similar policies to address pollution and carbon 



doi:10.6342/NTU202303841

2 

 

emissions. Examples include the United Nations Framework Convention on Climate 

Change [3], the Zero Emissions Transportation Association [4], the government of 

Norway which has set a target to sell only zero-emission cars by 2025 [5], and the 

United Kingdom which plans to phase out the sale of new gasoline and diesel cars by 

2030 [6]. And research[7], [8]showed that the electrification of vehicle might have a 

chance to reduce those air pollutions generated by vehicles. 

 In line with the global trend, Taiwan is actively progressing towards the adoption 

of electric vehicles. According to the government open data [9], the car to motorcycle 

ratio in Taiwan is 59:100, Electric motorbikes account for 4.5% of all motorbikes and 

electric cars for 0.4% of all cars in 2022. And it was 3.9% and 0.2% in 2021. Hence, it 

is essential to delve into the environmental implications of vehicle electrification. 

1.2 Objective 

To assess the pollution impact of vehicle electrification, this study employs 

computer vision techniques to classify and count vehicles in traffic video. Subsequently, 

the collected data is utilized in conjunction with pollutant regression analysis. 

Specifically, the objectives of this research are 

(1) Vision-based classification model of Ems and EVs from traffic flow 

video and count the proportion of each type of vehicle in the traffic flow. 
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(2) Analyze the emission contribution of electrify vehicles on-road. 

1.3 Research flowchart 

The flowchart of the work is depicted in Figure 1- 1. This work includes transfer 

learning, traffic data extraction and emission analysis. The utilized data includes the 

following three types. 

(1) Traffic counts: During the designated time period, the cumulative number of 

vehicles classified as Bus, Car, Truck, Motor, EV (Electric Car), EM (Electric 

Motorcycle), EV_ratio (Electric Vehicle ratio), EM_ratio (Electric 

Motorcycle ratio), Motor_ratio (Motorcycle ratio), and Electrify_ratio 

(Electrify vehicle ratio) are recorded and analyzed.   

(2) Pollutant concentrations: The pollution data of NOx, No, O3, CO, CO2, 

NMHC, CH4, PM1, CPN.  

(3) Meteorological conditions: ambient temperature (T), Barometric Pressure (P), 

relative humidity (RH), and wind speed (WS). 
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Figure 1- 1The Flowchart of the Work 
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2 Literature review 

In this chapter, previous studies were introduced and discussed. This chapter has Six 

parts. First, we compared the EV emission method. Next, we find different of 

measurement of vehicle emission. Third, we summed up the method of collecting traffic 

data. Fourth, we took a closer look at distinguishing EV from other cars. Next, we 

conducted a systematic review of utilizing of thermal image. Finally, we discussed our 

finding of these research and summery.  

2.1 EV emission on road 

In analyzing air pollution related to traffic using pollution concentration 

monitoring methods, the contribution of electric vehicles is typically disregarded. 

However, with the widespread adoption and rapid growth of electric vehicles, the 

contribution of electric vehicles to pollution emissions cannot be ignored [10]. 

Although EVs can reduce pollution caused by burning gasoline, other sources of 

pollution caused by their heavier weight [11], such as tire wear and road dust, are also 

worth investigating. 

In recent studies on the pollution of EVs, both laboratory tests [8] and analysis 

using pollution models [12] have been conducted and indicated that a positive 

relationship exists between vehicle weight and non-exhaust emissions, and electric 
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vehicles are 24% heavier than conventional vehicles. Research [13] also indicated that 

there is a positive relationship exists between vehicle weight and non-exhaust emissions. 

EV penetration would reduce pollution episodes in Taiwan's major cities by up to 60% 

[7] . 

 According to researches [14]–[16],that employed the life cycle assessment (LCA) 

approach to assess the emissions of air pollutants throughout the entire lifecycle of 

vehicles, including production, usage, and end-of-life. The findings revealed that EVs 

exhibited a decrease in CO2, VOCs, and NOX emissions and an increase in PM2.5 and 

SO2 emissions. 

2.2 Measurement of Vehicle Emission 

Study [17] indicated that measurement methods for vehicle exhaust emissions are 

typically categorized into two main types: laboratory measurements and real-world 

measurements. Laboratory measurements involve conducting emission tests on 

vehicles within a controlled environment and vehicle emission models. On the other 

hand, real-world measurements encompass various approaches such as tunnel testing, 

remote sensing testing, near-road measurements, and on-board testing.  

To estimate the emission rates, [18],[19] applied a comprehensive approach 

involving the application of dynamometer testing on a substantial number of laboratory 
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vehicles has been employed. 

 Mobile source factor model (MOBILE)[20] is developed by the US EPA and the 

California Air Resources Board (CARB). A macroscopic emission model was 

developed for China based on MOBILE by [21].   

Another model called computer program to calculate the emissions from road 

transport (COPERT) was developed by the European Commission (EC). A comparative 

study of both emission models was made by [22]. MOBILE and COPERT are compared 

to 8 others model by [23].   

Motor vehicle emission simulator (MOVES) model is a state-of-the-art vehicle 

emission factor model developed by the US EPA's office of transportation and air 

quality (OTAQ).[24] [25] applied MOVES for application in their city. MOVES and a 

traffic simulation model VISSIM are combined to predict emissions by [26] . 

 Models used for assessing vehicle emissions may not always accurately reflect the 

vehicle's actual operating mode and the corresponding emissions on the road. [27], [28] 

applied on-road measurement models for vehicle exhaust emission test. Fuel type, road 

elevation, road grade or other indicators may lead to the change of the vehicle pollution 

emission results were resulted by [29], [30]. On-board measurements with portable 

emission measurement systems (PEMS) to determine solid particle number (SPN) 

emission factors was applied by [31]. Comparison between models and on-road test 
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was made by [32]. 

2.3 Collect traffic data 

Traffic flow studies have focused on the interactions among various traffic 

participators and infrastructure. Beside the traditional method which is manual roadside 

observations with handheld counters, [33] collected traffic data using radar-based 

devices. Loop detector was applied by [34]. Pneumatic-tube counter was applied by 

[35]. Light Detection and Ranging (LIDAR) was applied by [36]. GPS was applied by 

[37]. Unmanned aerial vehicles (UAV) was applied by[38]–[40]. Vehicle-to-everything 

(V2X) communication equipment was applied by [41]. Cellular phone data was applied 

by [42]. Based on traffic video collected by CCTV or camera was applied by [43], [44]. 

Computer vision-based vehicle detection was applied by [45] [46]. 

 Computer vision-based vehicle detection has improved dramatically in recent 

years due to the increased speed of computer graphics. an appropriate image detection 

model plays a crucial role in extracting traffic data from videos. Convolutional Neural 

Networks (CNNs) have exhibited excellent performance in object detection. CNN-

based object detection models can be categorized into two-stage methods and one-stage 

methods. two-stage method is a two-stage process: proposing regions (region proposal) 

and then classifying and location-correcting predictions for these regions. R-CNN [47], 
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Mask R-CNN [48], Faster R-CNN [49] are the best known. One-staged methods skip 

the region proposal stage and get the final localization and content prediction at once. 

SSD [50] and YOLO [51] are the commonly used one stage detection methods. While 

one-stage methods may not achieve the same level of accuracy as two-stage methods, 

they offer higher efficiency. In practical applications, one-stage methods are well-suited 

for handling large volumes of image data. 

2.4 Distinguish EV from other cars 

As our means of transportation continue to evolve and new ways of getting around 

emerge, it becomes necessary to develop innovative sub-classification methods for 

Transportation Mode Detection (TMD) to effectively differentiate these novel forms of 

transport. With the transition from fossil-fueled cars to electric vehicles, the adoption 

of electric motorcycle, the utilization of hybrid buses, unique challenges arise when it 

comes to distinguishing these modes of transport. 

 Inductive power transfer (IPT) was applied by [52], which is a method that can 

transfer power to EVs without physical contact. Once these systems are integrated on 

the road and activated, we are able to identify the presence of EVs. 

 Data on vehicle dynamics and acoustic parameters to investigate potential 

differences between EV and combustion cars was collected by [53]. Analyses revealed 
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notable distinctions in both interior acoustics and external acoustic emissions. 

 EVs using the unique high-frequency switching noise only generated by the motor 

unit in EVs was detected by [54]. This can be conveniently accomplished by utilizing 

a smartphone carried by the pedestrian. 

 A method that utilizes features built on frequency analysis to identify idle-engine 

motor vibrations was presented by [55]. But this method is limited by the requirement 

of placing sensors on the vehicle, even if a smartphone with built-in inertial sensors can 

be used to measure. 

 The differences in thermal characteristics between EV and combustion cars were 

indicated by [56]. EVs do not generate heat in the engine compartment while in 

operation, which is typically located beneath the front hood of the vehicle. 

 The available literature on the classification of electric motorcycles is relatively 

limited. Computer vision-based classifier based on the visual appearance of the 

motorcycle was applied by [57]. We agree that relying computer vision-based on the 

visual appearance may not achieve the same level of effectiveness in distinguishing 

EVs. This is because certain car manufacturers, such as Volkswagen and Toyota, offer 

electric versions of their popular internal combustion engine vehicles, such as golf and 

C-HR, resulting in similar external appearances. This adds complexity to the task of 

differentiation. 
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In Taiwan, EVs are required by regulations to have a distinctive label on their 

license plates, indicating 'Electric Vehicle' in Chinese, and their license plate numbers 

typically start with the letter 'E' for electric. While using conventional license plate 

recognition methods[58] may address the identification issue for electric vehicles, we 

recognize that this approach may not be universally applicable worldwide.                                                            

2.5 Utilize of thermal image 

thermal imaging technology has found wide-ranging applications across various 

research fields, providing researchers with a valuable tool. By detecting and recording 

the thermal radiation emitted by objects or scenes, thermal imaging technology can 

provide valuable information about temperature distribution and heat transfer. 

 In biomedical research[59][60], thermal imaging is widely utilized for thermal 

physiology studies of organisms and medical diagnostics. 

 In the realm of building construction[61][62], thermal imaging can help detect 

thermal losses in buildings, thus providing recommendations for energy-saving 

improvements. 

 Recently, the application of thermal imaging technology in the field of 

autonomous vehicles has gained significant attention[63]–[65]. Traditional visual-

based systems may have reduced visibility at night, but thermal imaging technology 
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can detect the thermal radiation of objects, unaffected by lighting conditions. The 

extensive research and successful implementation of thermal imaging technology in the 

autonomous vehicle domain have led us to believe in its potential for providing stability 

and precision in object detection, including vehicles and pedestrians. 

2.6 Research gap and summery 

Currently, there is a lack of a reliable method to differentiate between a traditional 

internal combustion engine vehicle and an EV with absolute certainty. While there are 

certain visual cues and characteristics that can be indicative, such as the license plate 

or engine noise for internal combustion engine vehicles, these methods are not 

foolproof. In some cases, EVs designed to resemble traditional vehicles may exhibit 

similar visual features. Therefore, additional measures and technologies may be 

required to accurately and reliably distinguish between these types of vehicles. We 

believe that thermal imaging technology has the potential for significant breakthroughs 

in this field. EVs typically have lower heat emissions from the engine compartment 

compared to traditional vehicles[56]. By utilizing advanced image processing 

algorithms and machine learning techniques, thermal imaging technology can 

potentially analyze the thermal patterns and characteristics specific to electric vehicles, 

enabling more accurate and reliable identification. 
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 In addition, the review of pollution aspects highlights the importance of measuring 

the pollution caused by vehicles. Many researchers approach this issue from multiple 

approach, including laboratory measurements, roadside monitoring, pollution model 

simulations, on-board measurements, and more. However, when it comes to the 

pollution generated by EVs, the research is mainly limited to laboratory measurements 

and pollution model simulations. This limitation can be attributed to the relatively low 

proportion of EVs in the real world.  

Taiwan's unique development of motorcycles has resulted in a higher number of 

motorcycles compared to cars, and the proportion of electric motorcycles is also 

significant. We aim to utilize real-world roadside measurement data to validate the 

findings of other studies regarding pollution from EVs. This approach will contribute 

to a better understanding of the environmental impact of EVs and provide valuable 

insights for future research and policymaking. 

3 Methodology 

In this chapter, we will provide an overview of the methodology employed in this 

study. The chapter comprises six parts. We first discussed the techniques and 

procedures utilized for collecting traffic data. In subsection one we delve into the 

application of transfer learning techniques using YOLOv7 and the FLIR dataset. And 

soon on, we present the methodology for vehicle counting, specifically focusing on 
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categorizing vehicles using the StrongSORT algorithm. Second, we outline the 

procedures and methodologies employed for data collection. Finally, we explain the 

analytical framework used to determine the pollution emission contributions by 

different vehicle types. 

3.1 Traffic data collection 

In this chapter, we will present our methodology for collecting traffic data. Our 

approach involves utilizing transfer learning techniques to leverage an existing open 

dataset, followed by training our own object detection model using the collected data. 

3.1.1 Transfer learning with YOLOv7 and FLIR 

dataset 

We employ the latest YOLO version, YOLOv7[66], as our object detection 

model. YOLOv7 is an advanced version that builds upon previous iterations and 

incorporates improvements in terms of accuracy and speed. To train our YOLOv7 

model, we utilize a large-scale and well-annotated dataset. Specifically, we leverage 

the MS COCO[67] (Microsoft Common Objects in Context) dataset, which is a 

widely used benchmark dataset for object detection tasks. MS COCO consists of a 

diverse range of images with over 80 object categories, making it suitable for training 
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a robust and versatile object detection model. 

 This model is good at general object detection in regular video, which refers to 

visible light video. However, when it comes to using thermal imagery, the 

performance of such a model is bound to be significantly affected. Fortunately, 

FLIR[68] provides a comprehensive annotated thermal dataset that we can utilize. A 

total of 26,442 fully annotated frames with 520,000 bounding box annotations across 

15 different object categories are provided. After transfer learning process, our model 

can easily classify vehicle into different categories under thermal image. Due to the 

lack of specific labels for EVs and EMs in the dataset, they are not distinguished as 

EVs and EMs. Instead, EVs are categorized under "car," while EMs are categorized 

under "motor." This labeling limitation is a result of the MS COCO and FLIR thermal 

dataset not providing distinct labels for EVs and EMs. We will solve this problem in 

the next chapter. 

Transfer learning is a machine learning technique where knowledge gained from 

training a model on one task is applied to a different but related task. The idea behind 

transfer learning is that the features learned by a model on a large and general dataset 

can be useful for solving other related problems. Transfer learning is particularly 

beneficial when the new task has limited training data or when training from scratch 

would be computationally expensive or time-consuming. Compared to the MS COCO 
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dataset, the FLIR dataset is relatively smaller in terms of data volume. This poses a 

challenge for complex tasks like object detection. However, utilizing transfer learning 

is indeed a good approach in such cases. 

3.1.2 EV and EM classifier construction 

Once we have collected data using our thermal imaging device on the road and 

labeled the EVs and EMs accordingly. After we gather a sufficient amount of data. We 

can utilize transfer learning once again in our model training process. Indeed, 

considering that the dataset we collected is relatively smaller compared to the FLIR 

dataset and that our task shares similarities with the previous objective, transfer learning 

is an ideal approach. Which allows us reduce our workload while maintaining or even 

improving the model's performance. This is especially advantageous when working 

with limited data, as it allows us to make efficient use of available resources and achieve 

better results. 

3.1.3 Vehicle counting by categories by 

StrongSORT 

We applied StrongSORT[69] as our vehicle counting system. StrongSORT is a 

improvement method of DeepSORT[70] . The DeepSORT method operates based on 
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the following principle: it starts by predicting the trajectory of the current frame using 

the trajectory obtained from the Kalman filtering algorithm[71] and Hungarian 

Algorithm[72]. It then determines whether to confirm the predicted trajectory. Next, it 

detects objects in the current frame and correlates the detected objects with the 

predicted trajectory. The algorithm updates the trajectory after the correlation process 

is completed. This process continues by predicting the trajectory for the next frame, 

observing the actual detection results, and updating the trajectory accordingly. This 

cycle repeats for subsequent frames. If a track fails to match with any detected object, 

it will be deleted from the tracking list if it exceeds the maximum age threshold. On the 

other hand, if a detection result does not match any existing track, a new track is created, 

and the prediction process continues using the Kalman filtering algorithm.  

3.2 Data collection 

Based on the previous chapters, the vehicle counting system provides us with 

classified traffic flow data, including the following categories: Bus, truck, car, EV, 

motor, and EM. In this context, "car" refers to all vehicles, excluding EVs. "Motor" 

refers to all motorcycles, excluding EMs. Moreover, EVratio (Electric Vehicle ratio), 

EMratio (Electric Motorcycle ratio), Motorratio (Motorcycle ratio), and Electrifyratio 

(Electrify vehicle ratio) are also included. Those additional variables are calculated by 



doi:10.6342/NTU202303841

18 

 

Equation (3- 1)(3- 2)(3- 3)(3- 4). The reason for creating these variables is because I 

believe that the proportion of vehicles may also impact the results. Additionally, the 

total number of vehicles on a road is limited, so the proportion is likely to vary. The 

reason for not including variables for buses and trucks is because our main focus is to 

differentiate between EVs and EMs in terms of emissions. 

 

EVratio =
𝐸𝑉

𝐸𝑉+𝑐𝑎𝑟
  (3- 1) 

 

EMratio =
𝐸𝑀

𝐸𝑀+𝑚𝑜𝑡𝑜𝑟
  (3- 2) 

 

Motorratio =
𝐸𝑀+𝑀𝑜𝑡𝑜𝑟

𝐸𝑉+𝑐𝑎𝑟+𝐸𝑀+𝑀𝑜𝑡𝑜𝑟
  (3- 3) 

 

Electrifyratio =
𝐸𝑉+𝐸𝑀

𝐸𝑉+𝑐𝑎𝑟+𝐸𝑀+𝑀𝑜𝑡𝑜𝑟
  

(3- 4) 

 

In addition to the traffic flow data, Coarse Particle Number (CPN) concentration, mass 

concentration of PM1, CH4, NMHC, CO, CO2, NO, NOx are the pollution data used to 

analyze in this study. PM1.0 is the PM with diameter smaller than 1 μm. CPN is the 

particle number measured by Aerodynamic Particle Sizer (APS). NMHC stands for 

Non-Methane Hydrocarbons. It refers to a group of organic compounds that contain 

carbon (C) and hydrogen (H) atoms but do not include methane (CH4). Besides, 

ambient temperature (T), relative humidity (RH), wind speed (WS), wind direction 



doi:10.6342/NTU202303841

19 

 

(WD), and Barometric Pressure (P) were also recorded because of the sensitivity of 

ambient concentration to meteorological conditions. Table 3- 1 shows the time 

resolution, the unit, and the used instrument of collected data. 

Table 3- 1 Measurement Time Resolution and Unit 

 Time 

Resolution(sec) 

Unit Instrument 

CPN 120 #/cm3 Aerodynamic Particle Sizer (APS; TSI, 

3321) 

PM1.0 360 μg/m3 Tapered Element Oscillating 

Microbalance (TEOM) with Filter 

Dynamics Measurement System (FDMS) 

Monitor (Thermo Fisher Scientific, 

TEOM 1405-f) 

CH4 60 ppb Horiba apha-360 

 NMHC 60 ppb 

CO 60 ppm Ecotech EC9830 

CO2 60 ppm PICARRO G3101 

NO 60 ppm Ecotech serinus 40 

NOx 60 ppm 

Vehicle counts 360 Veh/6min Optris Xi400 thermal camera 

T 60 ˚C Smart Air Temperature and Relative 

Humidity Sensor (AMES, TPR159S) RH 60 % 

WS 60 m/sec Wind Speed and Direction Sensor 

(AMES, 

VMT107C) 

WD 60 degree 

P 60 mbars Smart Air Temperature and Relative 

Humidity Sensor (AMES, TPR159S) 
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3.3 Analysis of Pollution Emission Contributions 

by Vehicle Types 

Multilinear regression analysis is a common method used in air pollution analysis 

to compare the importance of different features to the objective value[73][74]. We 

employed this method to actualize our emission analysis. First, we identify the 

contribution of EM and EV by comparing the importance of different features. The 

multilinear regression model is shown in Equation (3- 5) . 

𝑌𝑝 =∑𝛽𝑖 ∙ 𝑥𝑝,𝑖
𝑖

+ 𝛽0 (3- 5) 

Where Yp is the ambient concentration of the pollutant P, while 𝑥𝑝,𝑖 and 𝛽1 is 

the contribution factor and coefficient of the feature i, and 𝛽0  is the bias term. 

“Exhaustive Feature Selector method” is adopted to find significant features. 

Exhaustive Feature Selector method, also known as exhaustive search, is an 

infrequently used approach not because of its poor performance, but rather due to its 

high computational time complexity. The time complexity of this method is 2n, where 

n represents the number of variables. Fortunately, in our case, we only have 14 variables, 

which leads to a relatively short computation time. This allows us to find the optimal 

solution based on the criterion of model R-squared. 

Furthermore, to emphasize the investigation of the impact of traffic flow, we 
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attempted to replace the weather variables in the obtained optimal solution with highly 

correlated traffic flow variables. For example, we replaced temperature (T) with the 

traffic flow variables Car (correlation coefficient: 0.82) or Motor_ratio (correlation 

coefficient: -0.88). The decision to replace variables was based on the changes in R-

squared and the p-values of the newly added variables. Because the confidence level of 

statistically significance was set at 95%. In other words, the features with P-Value 

smaller than 0.05 were considered as significant.  

Due to the difference in the time resolution of different data sources as shown in 

Table 3- 1, we pre-processed the data into six-minute averages as [57] suggested. 
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4 Result 

In this chapter, we present the results obtained from our study. First, we describe 

the process of constructing the models used in our study. Second, we evaluate and 

validate the performance of the trace and vehicle counting models developed. The last 

section focuses on the analysis of pollution emission contributions by different vehicle 

types. 

4.1 Model construction  

For EM and EV classifier training tasks, samples images are needed. An Optris[75] 

Xi400 Infrared (IR) camera is used for thermal video recording as Figure 4- 1. The 80 

Hz frame rate allows for the monitoring of fast thermal processes, even including a line-

scan function. The spot finder IR camera has an optical resolution of 382 x 288 pixels 

and comes with an extensive ready-to-use package including a versatile image 

processing software. 

 

Figure 4- 1 IR camera Xi 400 
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Based on the results of [56], we collected front-view photos of vehicles focusing on 

the different engine heat signatures. However, the performance was not as expected, 

and there were significant instances where vehicles were misclassified as EVs. We 

speculate that the following reasons may have contributed to this issue: 

(1)  Newness of the vehicle 

We observed that the engine of the old-generation car heats up very obviously, 

compared to the new-generation car which does not heat up significantly. It can be 

attributed to the advancement of vehicle manufacturing process, aerodynamic design 

and engine technology. The vehicle's ability to dissipate heat has been emphasized and 

the efficiency of the engine has been improved. The advancement of car body materials 

and aerodynamic design may also be the reasons. Figure 4- 2 shown the different of 

two kind of car, the left rectangle one is hot and old while right rectangle one is cold 

and new respectively. 
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Figure 4- 2 Example of Thermal image of New car and Old car 

(2) Vehicle operating conditions 

We observed that vehicles exit the highway exhibit less noticeable heat, whereas 

vehicles operating at low speeds, such as those in parking lots or idling by the roadside 

exhibit more pronounced heat signatures. This can be attributed to the fact that the 

primary cooling mechanism of vehicles is air cooling generated by the airflow. Higher 

speeds indicate better cooling efficiency as the airflow increases. On the other hand, 

stationary vehicles have poorer cooling efficiency due to the lack of airflow. Figure 4- 

3 shown that all the cars are cold but only the right car is an EV.  

 

 

 

Figure 4- 3 Example of Thermal Image of Vehicle operating condition 
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(3) Cold car  

We observed that the heat generation of cold started vehicles is not significant. The 

engine temperature in this case follows a linear increase over time. Cold car might be 

observed near the parking lot and resident neighborhood due to the long-term parking. 

Cold-started vehicles are also a major contributor to pollution[76][77]. Figure 4- 4 

shown a cold car, while its tire also didn’t heat up by the friction to the ground. We can 

speculate that this vehicle has recently been started or is in the early stages of operation. 

 

Figure 4- 4 Example of Thermal Image of Cold Car 

 

These factors pose significant challenges in accurately determining engine temperature. 

It makes the judgment of engine temperature not as simple as "hot" or "cold". This 

means conventional vehicles may not exhibit clear thermal characteristics due to those 

factors. Also, EVs may experience overheating due to factors like solar. 

After numerous attempts, we have identified a thermal feature that allows us to 

make more accurate judgments, namely the exhaust pipe. We found that the 

temperature of the exhaust pipe exhibits clear thermal characteristics within the first 20 



doi:10.6342/NTU202303841

26 

 

seconds after starting the vehicle. Additionally, there are no restrictions imposed by car 

manufacturers on this aspect, as the purpose of the exhaust pipe is to dissipate waste 

heat. Any impact on the efficiency of the exhaust pipe would only result in reduced 

vehicle efficiency. Figure 4- 5 Figure 4- 6 shown the example of EVs and Cars in the 

rear view. 

 

 
Figure 4- 5 Example of Thermal Image of EV 
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Figure 4- 6 Example of Thermal Image of Car 

 

 

 For EMs, we have also adopted the same strategy. Since EMs do not have an 

exhaust pipe, we can easily classify them based on their thermal characteristics as either 

hot or not hot. Figure 4- 7 Figure 4- 8 shown the example of EMs and Motor in the rear 

view. 
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Figure 4- 7 Example of Thermal Image of EM 

 

Figure 4- 8 Example of Thermal Image of Motor 
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From this point on, our model's objective is defined as classifying EVs and EMs 

from the thermal imaging vehicle flow observed from the rear. Thus, we collected EM 

and EV image around the campus of National Taiwan University. We have prepared 

1431images with EMs and 2003 images with EVs. In order to provide more details, the 

images include both front-view and rear-view perspectives. Details of samples are 

shown in Table 4- 1Table 4- 2Figure 4- 5Figure 4- 6 Figure 4- 7 Figure 4- 8.  

 

Table 4- 1 Training data detail of EV and Car 

Type EV Car 

Total Images# 2003 

Labels# 1872 7943 

View Front Rear Front Rear 

Images# 1490 513 1490 513 

Table 4- 2 Training data detail of EM Motor 

Type EM Motor 

Images# 1431 

Labels# 923 8547 

View Front Rear Front Rear 

Vehicles# 408 1023 408 1023 
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4.2 Trace model and vehicle counting model 

Performance Evaluation and Validation 

In this chapter, we aim to validate the performance of the model in classifying 

vehicles in a traffic flow. For this purpose, we selected a specific scene and recorded 

the traffic flow, and the ground truth of vehicles in the flow was manually calculated 

by human observers. 

In order to minimize the issue of vehicles obstructing each other, we chose to 

observe the traffic flow from a pedestrian overpass near campus which located at No. 

92, Sec. 4, Roosevelt Rd., Taipei City, Taiwan, as Figure 4- 9 shown. 

 

Figure 4- 9 Site for Model evaluation 

We collected data for two different time periods, namely from 15:30 to 16:30 in 

the afternoon on June 2, 2023 and from 20:50 to 21:30 in the evening on June 6, 2023. 

The chosen time periods include both the afternoon and evening to showcase the 
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performance of the model during both daytime and nighttime conditions. The result is 

shown at Table 4- 3 Table 4- 4 

 

 Table 4- 3 Result of model evaluation on June 2 

 bus car EM EV motor truck 

Ground truth 101 891 98 10 1103 75 

Model 87 895 102 7 1095 77 

Model/Ground truth 0.86 1.01 1.04 0.7 0.99 1.03 

 

Table 4- 4 Result of model evaluation on June 6 

 bus car EM EV motor truck 

Ground truth 74 478 136 7 1070 16 

Model 80 482 132 5 1066 14 

Model/ground truth 1.08 1.01 0.97 0.71 0.99 0.88 

 

Moreover, this model performance evaluation also applied to our on-road site data. 

We selected Sec. 3, Keelung Rd., Taipei City, Taiwan as our on-road measurement 

location.  Figure 4- 10 shown the site. 
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Figure 4- 10 Site for Pollution Emission 

 

We collected data for two different time periods, namely from 22:20 to 23:20 in 

the evening on June 7, 2023, and from 15:30 to 16:30 in the afternoon on June 13, 2023. 

  shown the result.  

 

Table 4- 5 Result of model evaluation on June 7 

 bus car EM EV motor truck 

Ground truth 42 401 175 13 1843 17 

Model 44 414 173 13 1847 14 

Model/ground truth 0.96 0.97 1.01 1 0.99 1.21 

  

 

 

 

 



doi:10.6342/NTU202303841

33 

 

4.3 Analysis of Pollution Emission Contributions 

by Vehicle Types 

Multilinear regression was applied in this section. Feature selection was also 

applied. Figure 4- 11 Figure 4- 12 shows the results. The symbol ‘- ‘in the Table 

indicates that this variable is not significant, and the lower the value of the P-value, the 

more significant it is considered. These pollutants can be broadly categorized into two 

types. 

(1) Particles Pollutants  

Particles pollutants, such as CPN and PM1, are also considered non-exhaust 

emissions. Non-exhaust emissions (e.g., brake, tire wear) may become the main source 

of PM on the road. Also, these pollutants are influenced by the power generation 

methods. Research [10] shown that vehicles powered by clean energy sources can 

significantly reduce particles emissions. On the other hand, the greater the proportion 

of coal in the generation mix, the more negative impacts EVs may have on air quality. 

However, we expected that EM and EV should have significant to these pollutants as 

the previous research indicated. The variables Car, T and RH are significant to CPN. 

The variables Bus, Car, Motor, T, RH and P are significant to PM1. 

(2) Gaseous Pollutants 
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Gaseous pollutants include NOx, NO, O3, CO, CO2, NMHC and CH4. We 

expected that EM and EV should have no significant to these pollutants. Because these 

pollutants were generated by burning gasoline in the engine which EM and EV don’t 

have. But not all of them are so sensitive to the vehicle. For example, O3 is formed 

through the reaction of compounds in the air with sunlight and heat. Although some of 

these compounds may be emitted by vehicles, the influence of temperature and heat 

cannot be disregarded. This is consistent with the fact that O3 concentration tends to be 

highest around 14:00 to 16:00, when sunlight is strongest and temperatures are highest. 

The variables Motor, WS, T, EM_ratio and Motor_ratio are significant to NOx. The 

variables Car, EV, Motor, WS, T, EM_ratio, Motor_ratio and Electrify_ratio are 

significant to NO. The variables T and RH are significant to O3. The variables Bus, Car 

and Motor are significant to CO. The variables EM, Motor, P and EM_ratio are 

significant to CO2. The variables EV, Motor, EM_ratio and Electrify_ratio are 

significant to NMHC. The variables EM, Motor, Truck and P are significant to CH4. 

From the traffic flow variables perspective, EM is significant to CO2 and CH4, EV 

is significant to NO and NMHC. Car is significant to NOx, NMHC. Motor is significant 

to NO, PM1. Bus is significant to CO and PM1. Truck is significant to CH4. EV_ratio 

doesn’t show any significant. EM_ratio is significant to NOx, NO, CO2 and NMHC. 

Motor_ratio is significant to NOx and NO. Electrify_ratio is significant to NO and 
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NMHC. 

 

 

 

 

Figure 4- 11 Result of analysis of Pollution Emission of NOx, NO, O3, CO, CO2 
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Figure 4- 12 Result of analysis of Pollution Emission of NMHC, CH4, PM1, CPN 

   

5 Conclusion 

In this chapter, we first summarize our finding regarding to our study. Second, we 

listed the limitations to our study. Final is our future work. 

5.1 Contribution 

In this section, we summarize the results regarding our objective, which can be 

divided into the following categories: EV and EM classifier, analysis of Pollution 

Emission Contributions by Vehicle Types 

5.1.1 EV and EM classifier 

Based on our validation of the model's performance, we can conclude that thermal 
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imaging demonstrates excellent object recognition capabilities. We have proposed a 

classification method based on thermal features to differentiate between EM and EV, 

which are often difficult to distinguish on the road. Although the recognition of EVs is 

not yet perfect, we attribute this to the limited number of EV fleets in Taiwan, and 

primarily concentrated on a single vehicle brand, Tesla which cause our training data 

lack of variety of EV. This limitation results in some uncertainty when encountering 

EVs from other manufacturers. However, in our model performance test, the 

performance of EM and EV are 100.7% and 87%. The performance of bus, car, motor, 

truck are 91.7%, 101.3%, 99.9% and 98.9%, respectively. Our model still shows it’s 

great ability to distinguish EVs and EMs from traffic flow. The performance here means 

the total vehicle count by model divided by the real-world vehicle count. That is not the 

meaning of “accuracy” or “precision” in statistic. 

With the increasing trend of EVs in the future, the growing presence of EVs on 

the roads may allow for the collection of a more comprehensive training dataset, 

thereby enhancing the performance of the model. The insights derived from this 

research could potentially offer valuable references for future researchers. 

5.1.2 Analysis of Pollution Emission Contributions 
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by Vehicle Types  

In analysis of pollution emission, we mainly focus on the impact causes by EVs 

and EMs. For those gaseous pollutants, EM and EV shows no significant to NOx, O3, 

CO, which meets our expectations. The increase or decrease in the number of electric 

vehicles will not affect any of them. Electric Vehicle did not emit any of them on the 

road. However, EV is significant to NO and NMHC, EM is significant to CO2 and 

NMHC, which is out of our expectation. But our own created variables, such as 

EM_ratio, Motor_ratio, and Electrify_ratio, have shown significant associations with 

these four pollutants. We speculate that the reason behind this is due to the limited 

capacity of the road. As the number of EVs and EMs increases, it reducing the number 

of Car and Motor. This can be inferred from the contributions of Electrify_ratio and 

EM_ratio. Similarly, Car and Motor can also compete with each other, resulting in the 

contribution of Motor_ratio. 

For Particles Pollutants, both EM and EV shows insignificant to CPN and PM1. 

Our own created variables also show insignificant to CPN and PM1. However, 

temperature and humidity show a significant correlation. We speculate that Particles 

pollutants may be more influenced by weather conditions, making the impact of vehicle 

emissions less evident and difficult to capture accurately. This hypothesis could be 
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addressed with further data collection. 

In conclusion, despite the relatively small dataset, we were able to deduce 

conclusions similar to those found in the literature. Our results confirm the pollution 

variations caused by electric vehicles. 

5.2 Limitation 

Due to the low resolution of the thermal camera, there are often misjudgments in 

recognizing vehicles in the video due to external interference at each frame. Fortunately, 

the StrongSORT algorithm can address such issues. However, we have also observed 

that it has significant difficulties in correctly identifying stationary vehicles. Therefore, 

the application of our research work should not be used in areas where there are 

stationary vehicles, for example, in front of traffic lights. This limitation is due to the 

insufficient recognition capabilities of the model. Also, we found that weather 

condition and low temperature cause blur in each frame. We speculate that replacing 

the thermal imaging camera with a higher quality one can solve this problem.  

 

5.3 Future work 

We have observed that electric buses also exhibit similar thermal characteristics, 
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with their engines and exhaust pipes positioned at the rear of the vehicle, making it a 

potential distinguishing feature for classification. Although this study did not consider 

electric buses due to their absence at the study location, future research could aim to 

develop a tool capable of identifying all types of vehicles on the road. Such a tool could 

provide valuable data for the development of smart cities and their transportation 

systems.  

 For the emission analysis part, We should collect more information to prove our 

inference. 
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