Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9009
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王傑智(Chieh-Chih Wang)
dc.contributor.authorAndreas Dopferen
dc.contributor.author竇菲zh_TW
dc.date.accessioned2021-05-20T20:06:29Z-
dc.date.available2009-08-12
dc.date.available2021-05-20T20:06:29Z-
dc.date.copyright2009-08-12
dc.date.issued2009
dc.date.submitted2009-08-11
dc.identifier.citationBesl, P. & McKay, H. A method for registration of 3-d shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligenc.
Burgard, W., Fox, D., Jans, H., Matenar, C., & Thrun, S. (1999). Sonar-based mapping
of large-scale mobile robot environments using em. International Conference on Machine
Learning.
Cheeseman, P. & Smith, R. (1986). On the representation and estimation of spatial uncer-
tainty. International Journal of Robotics Research.
Derenick, J., Miller, T., Spletzer, J., Kushleyev, A., Foote, T., Stewart, J., Bohren, A., & Lee, D.
(2009). The sick lidar matlab/c++ toolbox: Software for rapidly interfacing/configuring
sick lidars with applications to real-time experimental robotics. IEEE/RSJ International
Conference on Intelligent Robots and Systems.
Elfes, A. (1987). Sonar-based real-world mapping and navigation. IEEE Transactions on
Robotics and Automation.
Frueh, C. & Zakhor, A. (2004). An automated method for large-scale, ground-based city
model aquisition. International Journal on Computer Vision.
Harrison, A. & Newman, P. (2008). High quality 3d laser ranging under general vehicle
motion. IEEE International Conference on Robotics and Automation, 7–12.
Li, G. & Liu, Y. (2007). An algorithm for extrinsic parameters calibration of a camera and
a laser range finder using line features. International Conference on Intelligent Robots and
Systems.
Lu, F. & Milios, E. (1997). Robot pose estimation in unknown environments by matching
2d range scans. Journal of Intelligent and Robotic Systems, 18(3), 249275.
Martin, M. & Moravec, H. (1996). Robot evidence grids. Technical report, Carnegie Mellon
University.
Nuechter, A., Lingemann, K., Hertzberg, K., & Surman, H. (2005). 6d slam with approxi-
mate data association. International Conference on Advanced Robotics.
Pless, R. & Zhang, Q. (2004). Extrinsic calibration of a camera and laser range finder. Inter-
national Conference on Intelligent Robots and Systems.
Rusinkiewicz, S. & Levoy, M. (2001). Efficient variants of the icp algorithm. Technical
report, Stanford University.
Ryde, J. & Hu, H. (2007). Mobile robot 3d perception and mapping with multi-resolution
occupancy lists. IEEE International Conference on Mechatronics and Automation.
Schulz, W. H. (2007). Landslide susceptibility revealed by lidar imagery and historical
records, seattle, washington. Engineering Geology, 89(1-2), 67 – 87.
Thrun, S., Burgard, W., & Fox, D. (2000). A real time algorithm for mobile robot map-
ping with applications to multi robot and 3d mapping. IEEE International Conference on
Robotics and Automation.
Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. Cambridge, Massachusetts:
The MIT Press.
Thrun, S., Ghahramini, Z., Koller, D., Durrant-Whyte, H., & Ng, A. (2002). Simultaneous
mapping and localization with sparse extended information filters. Proceedings of the
Fifth International Workshop on Algorithic Foundations of Robotics.
Thrun, S., Haehnel, D., Burgard, W., Ferguson, D., Montemerlo, M., Triebel, R., Baker, C., &
Whittaker, W. (2003). A system for volumetric robotic mining in abandoned mines. IEEE
International Conference on Robotics and Automation.
Wulf, O. & Wagner, B. (2003). Fast 3d scanning methods for laser measurement systems.
Technical report, Institute for Systems Engineering, University of Hannover, Germany.
Zhao, H., Chen, Y., & Shibasaki, R. (2007). An efficient extrinsic calibration of a multiple
laser scanners and cameras’ sensor system on a mobile platform. IEEE Inteligent Vehicle
Symposium.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9009-
dc.description.abstract在這篇論文中,我們提出一種只利用一台二維LIDAR讓機器人在三維空間中做定位和建立三維空間資訊的方法。我們同時利用事前的環境知識和機器人本人的運動來完成這件事。我們主要是達成一種在取得三維空間資訊的同時,也提供了比得上使用水平二維LIDAR定位效能的方法zh_TW
dc.description.abstractMuch work on localization and mapping using LIDAR has been done in mobile robotics. While earlier work was done only in the two dimensional domain, a recent shift towards three dimensional localization and mapping using laser rangefinder can be seen. Three dimensional representations allow a more accurate modeling of the real world, allowing more sophisticated path planning and leading to better obstacle avoidance. Also the performance of localization can be improved,and three dimensional data allows better object recognition than 2D data.
Techniques capturing 3D data involve either multiple 2D LIDARS, one 2D LIDAR that is nodded or rotated using an external actuator together with highly accurate orientation
sensing and synchronization, or an integrated, expensive 3D scanning system. In this thesis we propose a technique to capture 3D data only using one 2D LIDAR. To do so the robots
motion is utilized together with reasonable assumptions. It is assumed that the ground the robot is moving on is flat and visible in the scan, that the sensors height is known and that the environment has vertical structures.
First an initial calibration procedure using a camera together with the LIDAR is performed to reveal the extrinsic parameters between robot and the sensor. The localization
problem is divided into two steps. The LIDARs sensing plane is tilted away from the robots direction of motion towards the floor (or another known flat structure in the environment). The detection of the floor allows to estimate the angular orientation of the sensor in two dimensions. Using these estimates the range data can be transformed, so that known methods to estimate the missing parameters of the full LIDAR pose can be adopted. Being able to accurately estimate the three dimensional displacement between two consecutive scans allows to build an accurate three dimensional map of the environment.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:06:29Z (GMT). No. of bitstreams: 1
ntu-98-R96922144-1.pdf: 18713904 bytes, checksum: 94714976409801a758bfc531e378b3d9 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
CHAPTER 1. Introduction . 1
Localization . . . . . . . . 1
Mapping . . . . . . . . . . 2
Thesis objective . . . . . . 2
Overview . . . . . . . . . 2
CHAPTER 2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1. Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Mapping in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
CHAPTER 3. Foundations . . . . . . . . . . . . . . . . . . 6
3.1. LIDAR . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Raw Scan Processing . . . . . . . . . . . . . . . . . 8
3.2.1. Linear Least Square Line fitting . . . . . . . . 8
3.2.2. Line splitting . . . . . . . . . . . . . . . . . . . 8
3.3. Iterative Closest Point (ICP) Algorithm . . . . . . . 10
3.3.1. Improvements over the Naive Implementation 11
3.4. Clustering . . . . . . . . . . . . . . . . . . . . . . . 12
3.5. LIDAR calibration . . . . . . . . . . . . . . . . . . 13
3.5.1. Extrinsic Camera - LIDAR calibration . . . . . 13
3.5.2. Calibrating the LIDAR’s position . . . . . . . 17
CHAPTER 4. 3D Localization and Mapping using one 2D LIDAR 18
4.1. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2. Estimating the Orientation . . . . . . . . . . . . . . . . . . . 20
4.2.1. Identifying the ground line . . . . . . . . . . . . . . . . 20
4.2.2. Selection Issues . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3. Calculating Pitch and Roll . . . . . . . . . . . . . . . . 22
4.3. Estimating the Robot Motion . . . . . . . . . . . . . . . . . 23
4.3.1. Scan Projection . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2. Scan Matching Challenges . . . . . . . . . . . . . . . . 24
4.3.3. Constant Velocity Motion Model . . . . . . . . . . . . . 26
4.3.4. Sampling based Approach . . . . . . . . . . . . . . . . 26
4.4. Uncertainty Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.1. Uncertainty Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CHAPTER 5. Experimental Results . . . . . . . . . 30
5.1. Hardware . . . . . . . . . . . . . . . . . . . 30
5.1.1. Extrinsic camera-LIDAR calibration . . 32
5.1.2. LIDAR calibration . . . . . . . . . . . . 32
5.2. Software Implementation . . . . . . . . . . 33
5.3. 3D-map of the CSIE Building: Fourth floor . 33
5.4. 3D-map of the CSIE Building: First floor . . 38
5.4.1. Performance . . . . . . . . . . . . . . . 42
5.4.2. Issues . . . . . . . . . . . . . . . . . . . 42
5.5. Gridmaps . . . . . . . . . . . . . . . . . . . 44
CHAPTER 6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
dc.language.isoen
dc.title運用單具二維LIDAR在立體環境中定位與建地圖zh_TW
dc.title3D Localization and Mapping Using One 2D LIDARen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃漢邦(Han-Pang Huang),林達德(Ta-Te Lin),康仕仲(Shih-Chung Kang)
dc.subject.keyword建立三維空間,zh_TW
dc.subject.keyword3D mapping,LIDAR,en
dc.relation.page48
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf18.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved