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摘要 

在這篇論文中，我們提出一種只利用一台二維 LIDAR 讓機器人在三維空間

中做定位和建立三維空間資訊的方法。我們同時利用事前的環境知識和機器人本

人的運動來完成這件事。我們主要是達成一種在取得三維空間資訊的同時，也提

供了比得上使用水平二維 LIDAR 定位效能的方法。 
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ABSTRACT

M UCH work on localization and mapping using LIDAR has been done in mo-
bile robotics. While earlier work was done only in the two dimensional do-
main, a recent shift towards three dimensional localization and mapping us-
ing laser rangefinder can be seen. Three dimensional representations allow a

more accurate modeling of the real world, allowing more sophisticated path planning and
leading to better obstacle avoidance. Also the performance of localization can be improved,
and three dimensional data allows better object recognition than 2D data.

Techniques capturing 3D data involve either multiple 2D LIDARS, one 2D LIDAR that
is nodded or rotated using an external actuator together with highly accurate orientation
sensing and synchronization, or an integrated, expensive 3D scanning system. In this thesis
we propose a technique to capture 3D data only using one 2D LIDAR. To do so the robots
motion is utilized together with reasonable assumptions. It is assumed that the ground the
robot is moving on is flat and visible in the scan, that the sensors height is known and that
the environment has vertical structures.

First an initial calibration procedure using a camera together with the LIDAR is per-
formed to reveal the extrinsic parameters between robot and the sensor. The localization
problem is divided into two steps. The LIDARs sensing plane is tilted away from the robots
direction of motion towards the floor (or another known flat structure in the environment).
The detection of the floor allows to estimate the angular orientation of the sensor in two
dimensions. Using these estimates the range data can be transformed, so that known meth-
ods to estimate the missing parameters of the full LIDAR pose can be adopted. Being able
to accurately estimate the three dimensional displacement between two consecutive scans
allows to build an accurate three dimensional map of the environment.
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CHAPTER 1

Introduction

T
O allow a mobile robot safe and efficient operation within the real world,

their perception needs to answer two fundamental questions. One of them

is: ”How does the world (around me) look like?”. To interact with the phys-

ical world a robot needs knowledge about the environment. In which form

this information is required relates strongly to the robots purpose. For a robot that moves

in a static environment it might be sufficient to know which areas it can traverse, but for a

robot that is expected to do more sophisticated tasks such as interacting with the environ-

ment a higher level representation of the environment is required. The problem of deriving

a world representation from sensors readings is called mapping.

The other question to answer is: ”Where am I?”. Just to know how the environment

looks like is not enough. A robot also needs to know how its location in this environment

and how it is located with respect to a certain object. The problem of finding the robots

location is called localization. The sensors used for both can be cameras, sonars, laser

rangefinder or any other sensor that can sense relevant information of the environment.

In this thesis we focus on Light Detection and Ranging (LIDAR) sensors which use a laser

beam to sense the distance to objects. The characteristics of this class of sensors will be

discussed in section 3.1.

Localization

When talking about localization we can distinguish two different ways. One is to

localize the robot given that a map of the environment is given. If the initial location in

the map is known the task gets easier, since the region within which the robot can be is
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bounded. If no initial location is given the problem get harder because more possible lo-

cations where the robot can be exist. The other way that is also named as localization is

to keep track of the robot’s subsequent movement. Rather than using a map of the whole

environment, the previous sensor reading is used together with the current reading to es-

timate the change of position. Adding up these position changes localizes the robot with

respect to its starting position. Following the taxonomy of (Thrun et al., 2005) this category

of localization problems is called position tracking.

Mapping

Mapping is the problem of deriving a world representation given sensor measure-

ments. Many possible map representations have been discussed like grid based approaches,

topological ones or direct approaches that use the raw measurements in some sense. Given

the position from which the sensor reading was recorded the reading can be integrated in

the map in several ways. Caution has to be taken since in real world applications neither

the sensor reading nor the position will be perfectly known.

Thesis objective

This thesis describes a method to localize a robot in 3D and generate a map of its en-

vironment using only one 2D LIDAR. To do so prior knowledge about the environment is

utilized together with the robots motion. This work aims to reach comparable localization

performance to 2D method while being able to capture richer 3D information.

Overview

Chapter 2 of this thesis will give an overview about existing mapping and localiza-

tion techniques and will discuss different 3D mapping methods. Chapter 3 will introduce

different methods and algorithms that are used to complete the work of this thesis. Algo-

rithms to process the raw LIDAR data will be presented together with a calibration method

to find the extrinsic parameters between a camera and a laser rangefinder which will be

used to calibrate the LIDAR position and orientation. Chapter 4 will introduce our ap-

proach for 3D localization and mapping using one 2D LIDAR while chapter 5 will show

detailed results. The last chapter is going to conclude this thesis and point out future pos-

sible research directions.

2



CHAPTER 2

Related Work

T
HE problem of modeling physical structures has been long studied in different

research areas as geoscience (Schulz, 2007), photogrammetry or computer vi-

sion. Recently mapping using LIDARs has become popular in robotics, pop-

ular to the extend that nowadays most robots that are intended to move in

either indoor or outdoor environments use one. Often no prior map is given, so the robot

needs to build one in order to navigate in the environment and interact with it.

2.1. Mapping

First work on autonomous map building using a grid based approach was done by

(Elfes, 1987) who proposed using occupancy grid maps for mapping. Due to limits of

sonars as range sensors and the lack of computational power at this time his maps did

not extend the size of a few thousand grid cells. The work on occupancy grids was later

extended to 3D using Stereo vision by (Martin & Moravec, 1996). Various versions of grid

based mapping are presently widely used because they are intuitive to use and easy to

implement. Higher level features like loop closing can only be achieved with extra effort.

Feature based approaches extract, like the name suggests, features from the raw scan

and then keep track of them and the robots location by using an Extended Kalman Filter

(EKF). First described by (Cheeseman & Smith, 1986) EKF based SLAM allows loop closure,

but introduces a data association problem and has to deal with the burden of the quadratic

growth of the covariance matrix used by the EKF. Much work has been done and is done

in this area since the seminal paper. (Thrun et al., 2002) introduced an Information Filter

based (IF) technique that addresses this issue while (Burgard et al., 1999) uses a hybrid
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approach generating local submaps using occupancy grids and then using Expectation

Maximization (EM) Algorithm to form the global maps out of the submaps.

Direct methods use the raw measurements returned by the sensor to estimate the

robots pose and represent the map. To find the location of the mobile robot the spatial con-

straints between two consequent scans are estimated. Assuming that parts of the two scans

show the same environment, algorithms like the Iterative Closest Point Algorithm (ICP)

can be used to match the scans. ICP was introduced by (Besl & McKay, Besl & McKay)

and is heavily used in 2D as well as 3D. Various improvements to this algorithm have been

proposed, (Rusinkiewicz & Levoy, 2001) gives an excellent summary describing the effects

on performance and accuracy of the different variations. The map representation is typical

a set of points, or a list of scans together with the corresponding robot pose in which the

scan was taken. Parts of this thesis work use direct methods to estimate the robots pose

and to describe the map.

2.2. Mapping in 3D

While most work mentioned before was done in 2D, the methods used can be ex-

tended to the three dimensional world. 3D EKF based techniques are often used in visual

methods while range data based ones often use direct or gridmap based approaches.

Few sensors exist that can capture 3D data of its environment - one kind of these

sensors are Time of Flight (TOF) cameras which use an array of flashing IR LEDs to get

depth information. Their range is limited to a few meters, and the data returned is rather

noisy.

Several techniques for acquiring three-dimensional data using 2D range scanners mounted

on mobile robots have been proposed. One approach is to mount two scanners with differ-

ent orientations as done by (Thrun et al., 2000) and (Thrun et al., 2003) another one to use

one scanner and pan, tilt or rotate it (Harrison & Newman, 2008).

(Wulf & Wagner, 2003) shows the influence of different ways of tilting/rotating one

scanner in space on the returned data. Drawback of these methods is that they require ex-

tra effort to precisely synchronize the tilting/rotating actuator with the scanner in order to

determine the orientation in which each scan was taken. In case the robot is moving during

the scanning the robots trajectory also needs to be taken into account. Several robotic sys-

tems avoid that problem by stopping for the the scanning. (Nuechter et al., 2005) and (Ryde

4
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& Hu, 2007) use this ’stop-and-go’ method for capturing data. Additional sensors as an

Odometer or an IMU can be used to estimate the path traveled during the scan. (Harrison

& Newman, 2008) describes in detail methods for the synchronization of scanner/tilting

platform, as well as optimisation techniques using prior knowledge about the structure of

the environment (for example: walls are known to be vertical) to allow capturing more

accurate 3D information using a tilting scanner under general vehicle motion.

To capture 3D data with two LIDARs one is oriented with its scanning plane parallel

to the plane in which the robot moves, while the other one is pointing towards the objects

of interest having another orientation than the first one. Since the extrinsic parameters be-

tween the two scanners are fixed one can be used to determine the robots position in 2D

assuming movement only in two dimensions, as the other ’sweeps’ over the environment

while passing thus generating the 3D data. (Frueh & Zakhor, 2004) used this approach

to generate a city scale 3D model using 2 laser scanners mounted on a car while driving

through the city under normal traffic conditions. These type of approaches have the draw-

back that the 3D information is captured at the moment the robot is at a location, not prior

to that therefore the 3D data cant be used for navigation or obstacle avoidance purposes.

5



CHAPTER 3

Foundations

T
HIS chapter will introduce basic methods that are applied within this thesis.

After a short description of the main sensor utilized for this work, techniques

that are used to process raw LIDAR data are introduced. Then the ICP algo-

rithm will be discussed which is employed to match two consecutive scans.

Finally a method to find the extrinsic parameters between a camera and a laser scanner

will be introduced.

3.1. LIDAR

LIDAR (Light Detection and Ranging) is the notation for a class of optical sensors that

utilize light to measure distance to a remote target. While large high energy versions of

this technology are used in meteorology and astrophysics there is a large number of small,

portable sensing devices that can be used in industrial applications, or mounted on mobile

robots. We will introduce the latter type of this class of sensors.

(a) Hokuyo laser scanner (b) Sick LMS 291 (c) SICK S200

Figure 3.1. Examples of various LIDAR sensors
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A LIDAR device sends out a focused beam of light and measures the properties of the

scattered light returned by an object to the scanner. The properties of the returned light,

like time difference between sending out the beam and its return or phase shift, are then

used to estimate the distance to the target. For the sensors used in mobile robotics the light

source used is an eye-safe, invisible laser. To allow sensing the distance in more than one

direction a rotating mirror is used to sweep the beam in a 2D plane over the environment.

Figure 3.1 shows various models of laser range finders.

One typical characteristic for these sensors is a maximum range between 4 and 100

meters with an accuracy of a few centimeters or below. The amount of data points recorded

varies depending on the model within a range of 1000 to 15000 measurements/second. The

angular spacing between the measurements within the scanning plane ranges from 1◦ to

0.25◦.

Figure 3.1(a) shows a Hokuyo LIDAR which has a maximum range of 4 meters, an

angular resolution of 360/1024 degree and an opening angle of 240 deg. It is one of the

smallest rangefinders on the market with a 4x4 centimeter footprint, a height of 7 cen-

timeters and a weight of 160 grams. Figure 3.1(b) shows the widely used SICK LMS 291.

Experiments in this thesis were performed using this sensor. Figure 3.1(c) shows a SICK

S200.
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(a) raw scan data with the range in centimeters on
the vertical axis and the beam index (equivalent to
0.5 deg) on the horizontal axis
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(b) same scan as in (a) converted to carthesisan co-
ordinates. Both axis in centimeters.

Figure 3.2. Example of scans taken with a SICK LMS 291.
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3.2 RAW SCAN PROCESSING

3.2. Raw Scan Processing

LIDAR measurements return the distance to an object together with the angle under

which the measurement was made. This corresponds to a two-dimensional polar coordi-

nate system where a point is defined by (φi,disti). These coordinates can easily be trans-

ferred to a Cartesian coordinate system (xi,yi).

To educe higher level information from a scan it is desirable to group the points to seg-

ments. While distance criteria in polar or cartesian coordinates allow basic segmentation,

line segmentation is particularly helpful since in man-made environments most structures

tend to have planar surfaces which are represented as lines in a scan.

3.2.1. Linear Least Square Line fitting

Given a set of n points defined by pairs (xi,yi) of Cartesian coordinates the line that

minimizes the squared distance to all points can be calculated in a closed form

tan2ϕ =
−2∑i(x̄− xi)(ȳ− yi)

∑i[(ȳ− yi)2− (x̄− xi)2]
(3.1)

r = x̄cos(ϕ)+ ȳsin(ϕ) (3.2)

where (x̄, ȳ) denotes the centroid of all points given by x̄ = ∑i xi and ȳ = ∑i yi. ϕ is the angle

of the normal and r the normal distance to the origin. Unfortunately a scan or even a part

of an already segmented scan can be composed of multiple lines. To deal with this issue

the following algorithm is applied.

3.2.2. Line splitting

The basic idea of the ’split and merge’ algorithm is to recursively subdivide the point

set into segments that can be better approximated by a line. Given a segment that should

be split into lines, a line is fit through all points using Equations 3.1 and 3.2. Then the point

with the maximum distance to the line is calculated. If the distance is below a defined

threshold the fitted line is returned. Otherwise a new line defined by the first and last

point in the set is defined. The point with the largest distance to this line is found and

selected as splitting point, separating the point set into one subset consisting of all points

from the first point to the splitting point (including) and a second subset containing the

rest of the points.

8
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A

B

C

(a) First step of the line splitting

A

B

C

E

(b) Two Lines were found

Figure 3.3. First the thick line in (a) is calculated using Equations 3.1 and 3.2. Point
C is found as point with the largest normal distance to the line. The distance is
above a defined treshold, so a new line AB is defined and the point with the largest
distance is found again (C). The pointset is splitted into two sets. Again lines are
fitted through both sets using the Linear Least Square method. The distance of E
to the fitted line is below the defined treshold, as well as all points of the second
set are within the treshold. Two lines were found.

The algorithm is performed subsequently on the subsets until no splitting occurs,

meaning that all points are located within a certain threshold to a line. Figure 3.3 illus-

trates the procedure and ListingAlgorithm 1 summarizes the line splitting algorithm.

Algorithm 1 Line splitting algorithm

1: given a set of n points (xi,yi)
2: calculate line LLSq (r,ϕ) using Equations 3.1, 3.2
3: find max distance dLSq line LLSq - point (xi,yi)
4: if distance dLSq > threshold then
5: define line by first and last point of the set LFL
6: find point psplit with max distance from line LFL
7: split set into p1...psplit , p(split+1)...pn
8: start algorithm with both new pointsets
9: end if

10: return all lines← line

9
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3.3. Iterative Closest Point (ICP) Algorithm

This algorithm was proposed by (Besl & McKay, Besl & McKay) to match two point

sets. It aims to find the transformation T = (T,R) from a point set B = {pB
i ...pB

n} to another

set A = {pA
i ...pA

m}. The ICP algorithm uses the raw data without the need to extract corre-

sponding features which makes it robust and easy to use. While in this thesis the algorithm

is employed in 2D it works as well in 3D or higher dimensional data.

First for each point pA in the current point set A the closest point pB from the point set

B is computed. This is a computationally demanding step requiring N comparisons with

M points. Where the point set A consists of N points and B of M. Various strategies can be

applied like kD-trees or sub sampling to speed up this step.

Given the two point sets A and B we consider the points pA
i and pB

i as a correspond-

ing pair. We then aim to find the rotation and translation T = (R,T ) that minimizes the

following function

e(R,T ) :=
1
N

N

∑
i=1
‖ pB

i − (RpA
i +T ) ‖2 (3.3)

Minimizing this function for the 2D case leads to the following closed form solution

for T = (ϕ,Tx,Ty). This solution follows (Lu & Milios, 1997).

ϕ = arctan
ΣAyBx −ΣAxBy

ΣAxBx +ΣAyBy

Tx = pAx − (pBx cosϕ− pBy sinϕ) (3.4)

Ty = pBy − (pAx cosϕ + pAy cosϕ)

where

pAx =
1
N

N

∑
i=1

pAx
i , pAy =

1
N

N

∑
i=1

pAy
i , pBx =

1
N

N

∑
i=1

pBx
i , pBy =

1
N

N

∑
i=1

pBy
i

and

ΣAyBx =
N

∑
i=1

(pAy
i − pAy)(pBx

i − pBx) , ΣAxBy =
N

∑
i=1

(pAx
i − pAx)(pBy

i − pBy)

ΣAxBx =
N

∑
i=1

(pAx
i − pAx)(pBx

i − pBx) , ΣAyBy =
N

∑
i=1

(pAy
i − pAy)(pBy

i − pBy).

10



3.3 ITERATIVE CLOSEST POINT (ICP) ALGORITHM

pAx
i denotes the x-coordinate if the ith point from set A while pBy

i denotes the y-coordinate

if the ith point from set B.

Different ways exists to calculate T, as they all minimize equation 3.3. (Besl & McKay,

Besl & McKay) gave a formal proof that the ICP algorithm converges for a local optimum.

It is also mentioned that a good initial condition increases the chance that the algorithm

converges to the global optimum. We will discuss how we get a good initial guess in

Section ??.

The complete ICP algorithm is summarized in Algorithm 2

Algorithm 2 Iterative Closest Point algorithm (ICP)

1: given two pointsets A = {pA
1 ...pA

n} and B = {pB
1 ...pB

m}
2: T← 0
3: score← ∞

4: while score > iterationThreshold & iterations < maxIterations do
5: transform A using ∆T
6: find n closest point pairs < pA

i , pB
j >

7: calculate ∆T using 3.4
8: T← T+∆T
9: calculate score as f (∆T)

10: iterations ++
11: end while
12: return Transformation T

3.3.1. Improvements over the Naive Implementation

Various improvements and variants of this algorithm have been proposed since the

seminal paper. They increase the robustness as well as the speed of ICP. (Rusinkiewicz

& Levoy, 2001) gives an excellent summary over various possible changes to the naive

implementation. We will introduce the ones relevant to our 2D ICP implementation.

Spatially equal point selection. The idea behind this variation is that for each Ob-

ject within the field of view of the laser scanner the number of points used for matching the

scans should be related to the size of the object, not to the distance between the LIDAR and

the object. If all points are used and they are weighted the same, a small object very close

to the scanner might dominate the matching process simply because of the high number of

measurements from this object.

11
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To avoid this issue a minimum (euclidean) distance between points is defined. Points

that are to close are removed from the point set. This procedure is performed before the

finding of the closest-point-pairs on one of the point sets.

Outlier removal. Newly detected objects and erroneous measurements tend to oc-

cur at positions that are spatially far from previous measurements, while new measure-

ments of already observed objects should be near to the previous measurements. Making

use of this information the matching result can be improved by refusing pairs with a dis-

tance over a certain threshold. The distance used was the maximum distance possible

between two scans which was derived from the robots maximum speed.

Further improvements. Other strategies include reduction of the point sets by ran-

domly sub sampling or using other criteria to choose which points to use. This is not

necessary in the 2D case since the number of points is low compared to the typical 3D case.

The weighting of pairs is another possible improvement over the naive implementation.

Possible criteria for the weighting is the point to point distance or the direction of the link

in relation to the directions to the neighbouring points within the point sets.

3.4. Clustering

By clustering or cluster analysis we mean to divide a a set of observations into several

subsets. Here it is not known how many clusters exist or if one exists at all, therefore

methods like k-means which require prior knowledge about the number of subsets are not

suitable.

We use a method similar to the QT (Quality Threshold) algorithm. Instead of defining

the number of expected clusters we define a distance threshold within which all points of a

cluster should be. For each point we build a candidate cluster by adding the closest point,

then the next closest and so on until the next point added would exceed the threshold. Then

the cluster with most points is saved as first true cluster. After all points from this cluster

are removed from the point set the procedure is repeated until all points are assigned to

clusters.

Since the data we work on is likely to have outliers and we are only interested in

agglomerations of points - we do not aim to assign every piont to a cluster - we stop the

algorithm once the number of data points in a new cluster falls below a certain threshold.

12



3.5 LIDAR CALIBRATION

3.5. LIDAR calibration

n this section a method to calibrate the LIDARs pose is introduced. By calibration we

mean to seek the LIDARs position and orientation in 3D. Finding this position and location

only using its own data is hard, since the data returned is sparse and only taken within a

2D plane.

A two step method that utilizes an additional camera is proposed. In the first step the

extrinsic parameters between the camera and LIDAR are estimated. The second step finds

the cameras position with respect to a placed calibration board. Combining both results

allows to estimate the LIDARs pose in 3D.

Figure 3.4 summarizes the approach.

Figure 3.4. Overview of the calibration procedure. First the extrinsic parameters
between camera and LIDAR are estimated. Then the camera is located using a
checkerboard. Finally the LIDARs pose is found by combining the two previous
results.

3.5.1. Extrinsic Camera - LIDAR calibration

To fuse the data of two sensors the extrinsic parameters between them need to be

known. Here we introduce a calibration method to estimate these parameters between a

LIDAR and a camera. Several papers address this calibration problem, but only few ad-

dress the problem using a 2D laser scanner with beams that are invisible to the camera.

While (Pless & Zhang, 2004) use the distance between the laser points and the plane of

a calibration object visible in the camera (Zhao et al., 2007) proposed the use of multiple

13
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video streams and a 3D model built from LIDAR data in which manually identified fea-

tures visible in both data sets are used to to perform calibration. The calibration approach

described here follows the work of (Li & Liu, 2007) which establishes constraints between

lines visible in the camera image and points in the laser scan for calibration purposes.

First we assume that the camera itself is calibrated, meaning its intrinsic parameters

are known and the pictures used are corrected. A pinhole camera can be described by a

projection from the world coordinates P = [X ,Y,Z]T to the image coordinates p = [u,v]T .

This can be represented as follows

p∼ K(RP+T ) (3.5)

where K is the intrinsic camera matrix, R is an orthonormal 3x3 matrix representing

the cameras orientation and T a vector representing the cameras position.

All laser points are recorded in a plane. A laser coordinate system is defined with its

origin in the LIDAR’s center - and without loss of generality the scan plane is defined as

Y = 0. Let PL be a point in the laser coordinate system, so the transformation between the

camera and laser coordinate system can be described as follows

PL = ΦP+ t (3.6)

where Φ is a 3x3 matrix representing the cameras orientation relative to the lasers

orientation and t a vector representing their relative spatial position. Using Equation 3.5

and 3.6 a point in the Laser coordinate system can be projected into the image plane.

Possible features for calibration would be points, lines and planes. Different features

introduce different constraints between camera and laser data. Point features would lead

to the strongest constraints, but since the light of the LIDAR is not visible in the camera

image it is less feasible to use point features.

Line features are easily detectable in the camera image. In LIDAR data changes in

depth are easily detectable. The edges of a calibration board are therefore visible as lines in

the camera image and visible as depth changes in the LIDAR data. The calibration target

is designed as a rectangular triangle as shown in Figure 3.7. The rectangular shape gives

the strongest constraints (Li & Liu, 2007).

Several poses of the checkerboard visible in both sensors are recorded. After identify-

ing the edges AB and AC from the calibration target as lines ab and ac in the cameras image

14
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A

B

C
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F

Calibration

Target

Figure 3.5. Calibration target intersecting with laser slice plane. Points E and F
are visible in the scan and known to lie on the lines AB respectively AC which are
visible in the camera.
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(a) A scan with the points corresponding to the calibra-
tion boards edges marked in red circles

(b) A camera image with lines marked and
the two laser points projected to the image us-
ing the initial guess for Φ and t. The object
in the left lower corner of the camera image is
the LIDAR sensor

Figure 3.6. Sample pair of camera image and laser scan used for calibration

plane we find the points E and F in the laser scan and project them to the camera plane as

e and f using Equation 3.5 and 3.6. Figure 3.6 shows one pair of image and scan used for

calibration. The distance between a point e and a line ab is defined by

dist(e,ab) =
‖
→
eb×

→
ab ‖

‖
→
ab ‖

. (3.7)

Using the distance between the lines and the projected points we can define the fol-

lowing error function that we minimize in order to find Φ and t.
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3.5 LIDAR CALIBRATION

min

{
N

∑
i=1

(dist(ei,aibi)+dist( fi,aici))2

}
. (3.8)

N is the number of corresponding camera images and laser scans. In order to calculate

Φ and t we solve the nonlinear optimization problem using the Levenberg-Marquard al-

gorithm. Algorithm 3 summarizes the proposed calibration method. Figure 3.7 shows the

calibration results by projecting the Laser data onto the image.

Algorithm 3 Extrinsic Camera LIDAR calibration

1: given N measurement pairs from camera and LIDAR
2: set initial Φ and t by estimation or rough measurement
3: for each pair detected the two intersection points of the laser slice plane with the cali-

bration targets edges and transform them to the cameras image plane
4: detect projections of the calibration targets edges to the image plane
5: calculate Φ and t by minimizing Equation 3.8 using the Levenberg-Marquard method
6: return Φ and t

Figure 3.7. The camera image after the calibration procedure with the laser data
projected on the image. The position of the laser scanner is visible in the lower left
corner. The points projected on the authors head appear since the head is occluding
the wall behind. The points actually hit the wall behind the head.
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3.5 LIDAR CALIBRATION

3.5.2. Calibrating the LIDAR’s position

Estimating the LIDARs’ position in space is a difficult task since the data returned

from the sensor is relatively sparse. Calibration objects would need to be large bulky ob-

jects. To our best knowledge no method has been published that only uses the LIDAR

data to uniquely calibrate the LIDARs position in 3D space. To avoid the hard problem of

directly calibrating the LIDAR, we propose to utilize the camera for the calibration proce-

dure.

In an intermediate step a checkerboard is used as calibration object to find the cameras

position in space. By placing the checkerboard on a well defined location like the ground

preferable with one orientation parallel to the an edge of the cameras image plane the pa-

rameters of interest (height, tilt and roll angle) can be estimated. Given the camera position

and orientation is found the results of the camera-LIDAR calibration procedure introduced

in the previous section can be used to estimate the LIDAR’s position in space.

Figure 3.8(a) shows an example of a picture from a checkerboard with axis found.

Figure 3.8(b) shows the estimated camera pose.

(a) Calibration pattern is placed on the ground to calibrate the
LIDAR’s pose with respect to the ground.

(b) Calibration results for the camera. Posi-
tion 1 marks the camera position, z-axis is the
hight above ground. All units in millimeter.

Figure 3.8. Calibrating camera with respect to the ground
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CHAPTER 4

3D Localization and Mapping using one 2D LIDAR

I
N this chapter we will describe our approach to perform 3D mapping and localiza-

tion using one 2D LIDAR. First, three assumptions for this approach are formulated

and discussed. Then a two-step localization strategy is described in detail in two

variants. One allows to perform the method online, the second one includes an

offline optimization step.

4.1. Assumptions

The Assumptions made will be described and justified first, and later on, after describ-

ing our approach, we will discuss up to which extend they can be attenuated or violated

without breaking the system.

ASSUMPTION 1. The robot is moving on flat ground which is visible in the scan.

For the case of a mobile robot operating in indoor environments, the first part of the

assumption will hold in most cases. Man-made buildings generally tend to have a flat floor.

Robots moving are under the influence of gravity so they will move within that floor-plane.

Typicall wheeled robots are not able to climb stairs - so they stay on the ground. In urban

environments where the robot moves on streets the assumption will locally hold in many

cases, while downward or upward slopes of the street might violate it. For any off-road

case this assumption will most likely not hold.

The second part of the assumption - that the floor is visible in the scan - can be easily

achieved by mounting the sensor in that way on the robot. Tilting the LIDARs sensing

plane sufficiently away from the direction of motion towards the floor will make sure the
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floor is visible in the scan. Sufficiently meaning that after expected changes in the robots

pitch and roll angle due the robots suspension or its elastic structure the floor is still visible.

ASSUMPTION 2. The height of the Laser scanner is known.

Given an initial calibration that reveals the sensors position in relation to a defined

starting point that is located on the floor (as described in Section 3.5.2) the robots initial

height is known. Unless in rough outdoor terrains where a robot is likely to move over

uneven terrain a wheeled indoor robot is unlikely to change its height. For urban environ-

ments with the sensor on a car like robot the assumption will hold on flat terrain driving

at constant speed. Rapid changes of speed are likely to lead to small height changes due to

the suspension. These changes are bounded and could be estimated given a sophisticated

motion model. For a legged robot the height is likely to change during walking, but given

the control input together with the mechanical configuration it is possible to estimate the

sensors height for each time.

ASSUMPTION 3. The environment has sufficient vertical structures.

This assumption is reasonable within most man-made structures as well as in urban

areas since they are also man-made. Buildings tend to have vertical walls, supporting

pillars, power poles or just poles for traffic signs are mostly vertical. Looking at a smaller

scale in buildings we can also find many vertical structures - chairs or tables have vertical

poles, closets or storage racks have vertical parts. Even trunks of a trees in nature tend to

be vertical. In most environments a robot might operate in, this assumption will hold, only

outdoor terrains moderately covered with vegetation will violate this assumption.

The meaning of sufficient will be explained later in detail. To illustrate, one defined,

vertical, wall like structure properly visible from the scanner would be sufficient. Two

visible vertical poles together with the ground (following Assumption 1) would also be

sufficient.
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4.2. Estimating the Orientation

Given the previously made assumptions together with an initial calibration, the seg-

ment of one LIDAR scan, that represents the ground, can be found and its characteristics

allow to estimate the orientation of the LIDAR sensor with respect to the floor.

4.2.1. Identifying the ground line

Assuming the floor is flat, all scan points representing the ground will lie on a line.

Applying the methods described Section 3.2 the scan is reduced to a set of lines represented

by n pairs (ϕi,ri) where ϕ is the angle of the normal and r is the normal distance of the line

to the origin.

With the use of Assumption 1 and 2 the parameters of the line representing the ground

solely depend on the LIDARs pitch and roll angle. The robots design can give bounds

on these two angles. Using these thresholds together with the initial calibration the line

representing the floor can be estimated.

The algorithm to find the ground line out of all line segments is listed as Algorithm 4.

Algorithm 4 ground line selection

1: score←−1
2: for all line segments (ri,ϕi) in scan do
3: if ri is within distanceBounds & ϕi is within orientationBounds then
4: if previous ground line exists then
5: distance score← f (ri,rprev)
6: orientation score← f (ϕi,ϕprev)
7: else
8: distance score← f (ri,rexpected)
9: orientation score← f (ϕi,ϕexpected)

10: end if
11: if distance score + orientation score > score then
12: score← distance score + orientation score
13: ground line← [ri,ϕi]
14: end if
15: end if
16: end for
17: if score =−1 then
18: return -1
19: else
20: return groundline (rGL,ϕGL)
21: end if
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Where (rexpected ,φexpected) are the values obtained from the initial calibration. Figure 4.1

shows an example scan segmented with the result of a groundline detection.
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Figure 4.1. Segmented scan with detected line in gray and groundline estimate
marked as a thick black line. Units on both axis in meters.

4.2.2. Selection Issues

Following the first assumption that the floor is visible in the scan the ground line can

be etimated. Depending on the robots assembly, the bounds within the line is expected can

be very tight. Experiments showed that often only one candidate exists within the bounds,

making the selection process robust.

One possible issue is that no groundline exists at all. Even it violates the first assump-

tion, the following localization steps can still be performed using the previous estimates

instead of current ones. It clearly decreases the accuracy of the localization, but allows to
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deal with periods without a detectable groundline. The case that there is no groundline

can happen when the robot is moving towards a long wall with a moving direction normal

to the wall. In all experiments concluded this happened only once.

Another possible approach is to keep all possible groundlines for each scan storing

them all as valid hypotheses, and later do an offline optimization step picking the candi-

date for each scan that fits best in the groundplane fitted through all groundlines.

4.2.3. Calculating Pitch and Roll

A laser rangefinder measures the distance to a number of points. All the vectors from

the center of the scanner to the measured point lie within a plane. Following Assumption

1 the ground is flat and is therefor also a plane. The intersection of two non-parallel planes

is a line - here this line is exactly the groundline identified in the previous step. Given the

parameters of this intersecting line, as well as the height of the scanner the orientation of

the scanning plane can be calculated.

Ground plane

Scanning plane

Groundline

y

x

z

Figure 4.2. Pitch and roll angles

Let h be the height of the scanner above ground, r the normal distance between the

intersecting line of the ground plane and the scanning plane and ϕ the orientation of the
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intersecting line. Using fundamental geometry we can see from Figure 4.2 that the pitch

angle θ is

θ =
π

2
− cos−1

(
h
r

)
(4.1)

the roll angle φ is:

φ = arctan
(

sinθ

tanϕ

)
(4.2)

4.3. Estimating the Robot Motion

In the previous section we showed how roll and pitch orientations of the LIDAR can

be estimated using assumptions about the environment. The LIDARs full pose is defined

by 6 degrees of freedom (DOF) - with roll, pitch and height 3 out of these 6 are known. In

this section we describe how we estimate the missing 3 parameters.

4.3.1. Scan Projection

Here we introduce two local coordinate systems. Let the robot’s coordinate system be

defined by three vectors: one normal to the ground plane, another is the projection of the

0◦ beam of the LIDAR on the ground plane and the third is normal to the previous two

with its direction chosen so a that a right-handed or positive coordinate system is formed.

The origin is chosen to be in the center of the laser rangefinder.

The second coordinate system is the LIDAR’s own coordinate system, defined by a

vector in the zero degree beam direction, one in the 90◦ direction and a third one that is

normal to the previous two also forming a right-hand coordinate system.

The x axis is defined in both by the forward (0◦) beam of the scanner while the z axis

is defined in the robots coordinate system by the normal of the ground plane, and in the

LIDARS coordinate system by the vector normal to the scanning plane. The rotation be-

tween the two coordinate systems can be defined by the previously calculated pitch and

roll angles so that for θ = 0◦ and φ = 0◦ the two coordinate systems coincide.

A rotational matrix is defined that projects each point in the LIDAR’s coordinate sys-

tem pi to the xy plane of the robots coordinate system

pxy
i = R · pi (4.3)
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where R is composed from Rx(θ) ·Ry(φ) and pxy
i denotes a projected point. The new

projected scan is parallel to the floor the robot is moving on. Vertical structures appear

in the same x-y location independent of the height at which the scanner actually mea-

sured them. This allows to adopt known techniques to estimate the displacement within

the groundplane between two consecutive scans given by the parameters x,y and ψ . The

displacement of the two scans is equivalent to the robots movement.

4.3.2. Scan Matching Challenges

To estimate the displacement of two consecutive, projected scans the Iterative Closest

Point algorithm (ICP) which was introduced in Section 3.3 is used. While the naive imple-

mentation works reasonably good on scans that are captured within the same plane in a

static environment, the projected data of a tilted LIDAR introduces several challenges.

First the points representing the ground need to be removed from both point sets

used for matching. This is done by calculating the line-point distance for each point to

the ground line and rejecting the ones below a certain threshold. Removing these points

reduces the number of points available for matching, but is necessary for the matching

procedure.

Tilting the LIDAR towards the ground reduces the maximum range in the scanners x-

direction. While a commonly used SICK LMS 291 has 81 meters maximum range, the range

in x-direction decreases down to a few meters when tilting the rangefinder. This makes it

harder to estimate the forward movement of the robot. Figure 4.3 shows the differences

between a horizontal and tilted scan that is reprojected of a hallway.

A scanner in horizontal orientation senses structures up to its maximum range within

the full field of view which allows good matching, a tilted LIDAR sees less objects due the

reduced forward range.

Strong features for estimating rotation and displacement in y-direction are usually

available for a tilted scanner, while there is a lack of features that allow to estimate the

forward movement. For example a long hallway without doors leads after removal of

the groundpoints to two lines of points on both sides of the robot which allow excellent

estimation of y and ψ but do not give any constraints on the forward direction.
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(a) horizontal scan of a hallway
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(b) The projected scan of the same scene captured
with LIDAR tilted 20 degree towards the ground.
Red points belong to the ground and are removed
before matching.

Figure 4.3. Example of a horizontal and projected scan. After removing the points
representing the ground in the tilted scan (right figure, red points) less features in
moving direction of the robot are available.

Vertical structures in two tilted scans will allow proper matching, non-vertical struc-

tures might degrade the result and lead to ambiguities. Horizontal objects in indoor envi-

ronments like tables or low walls outdoor will have constant projected locations for every

point on their horizontal surface. Using them for matching would lead to a false result.

Given enough vertical structures as postulated in Assumption 3 this issue can be avoided.

The reduced number of points in each scan and few features that establish constraints

in moving direction together with the ambiguities introduced by non vertical structures

can decrease the accuracy of ICP results. To deal with these issues, a good initial guess

for the ICP algorithm is needed. To find this good initial guess a constant velocity motion

model is used as described in the next section.
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4.3.3. Constant Velocity Motion Model

To find a good initial condition for the scan matching procedure, we use the previous

estimates for the robots velocity to project where the robot might be located at the time the

next scan is taken.

v =


Tx
dtp
Ty
dtp
ϕ

dtp

 Ti = v ·dtn

T = (ϕ,Tx,Ty) is the result of the previous matching. dtp is the time difference between

the two previous scans used for matching and Ti is the initial guess for the next matching.

dtn is the time difference between the current and previous scan.

This simple approach assumes that the velocity is changing at relatively slow rates.

Slow meaning that the changes between two consecutive scans are small, which is a rea-

sonable assumption.

4.3.4. Sampling based Approach

As described in Section 3.3, ICP requires a good initial guess to work since it is prone

to converge towards local minima. Ambiguities in the scan data can introduce several

local minima which might lead ICP to give an incorrect matching result. To make the

approach more robust to outliers and to aventually cover ambiguities, the ICP algorithm is

performed several times with the same two scans, but using different initial conditions.

Figure 4.4 shows an example of 200 initial conditions where all results clustering to-

wards one maxima (red dots). In Figure 4.5 also 200 initial conditions are displayed, but

the results in red agglomerate around various maxima. Having sufficient vertical structures

will make sure that at least one of these clusters corresponds to the correct result. To find

the actual clusters from the set of the ICP results, the algorithm described in Section 3.4 is

used.

When the environment is sufficiently structured and has few ambiguities, all initial

guesses tend to converge towards the same result. If the environment is not sufficiently

structured, has ambiguities or the two scans overlap only in small regions, multiple clusters

are likely to occur. In case of multiple solutions these solutions can be used to estimate

the uncertainty of the localization, or they can be saved as mulitple hpotheses and later an
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4.3 ESTIMATING THE ROBOT MOTION

Figure 4.4. Sampling based results with no ambiguities. The black points corre-
spond to initial guesses, the red ones are the results and the green circle with cross
is the center of the clustering result

Figure 4.5. Sampling based results with ambiguities. The black points correspond
to initial guesses, the red ones are the results and the green circle with cross is the
center of the clustering result. 3 possible solutions can be identified.

offline optimization process tries to find the best solution of each timestep. The multiple

hypotheses approach will be discussed in section 6.2.
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4.4 UNCERTAINTY MODELING

4.4. Uncertainty Modeling

A particle filter based approach is choosen to keep track of the uncertainty over the

scan matching procedure. A set of n particles each consisting of a possible robots pose is

initialized at the starting position. For each two consecuitive scans the ICP algorithm is

used to match the scans. The algorithm is initialized m times, with different, uniformly

distributed initial conditions. For each of the n particles, one of the ICP results is randomly

choosen and applied for each matching step. Here n = 10,000 particles were used with m =

100 ICP runs.

Algorithm 5 uncertainty estimation

1: initialize n particles at the starting location
2: for all measurements zi do
3: match scans zi, zi−1 m times with different initial conditions
4: for every Particle do
5: randomly choose a matching result and move particle accordingly
6: end for
7: end for

This approach represents the uncertainties by a distribution of samples. It allows to

track multimodal distributions that occur when having ambiguities in the sensor data.

4.4.1. Uncertainty Comparison

To evaluate the previously described approach, data was captured with a tilted LIDAR

and a horizontally oriented one. Both laser scanners were mounted close to each other on

the robot. As discussed in previous sections, we expect the performance for the tilted

scanner is comparable for two parameters (Ty,ϕ) while the accuracy in moving direction

(Tx) might be less compared to the results of the horizontal scanner.

Figure 4.6 shows an example of uncertainty measurements evaluated with the ap-

proach described in the previous section. The data was recorded in a long hallway. The

tilted scanner has few strong features to estimate dhe forward direction, while the horizon-

tal one can sense a wall in front and can therefore better estimate the movememnt in this

direction. After moving straigt for about 15 meters a 90◦ turn was made. The results are as

expected - in moving direction the uncertainty is larger for the tilted scanner.
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4.4 UNCERTAINTY MODELING
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Figure 4.6. Uncertainty comparision between tilted and horizontal scan data. Each
set of points represents the particle distribution after 10 matchings applied to the
particles. The green point sets represent the horizontal scan, the black ones the
tilted. Each set consists of 10,000 particles.
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CHAPTER 5

Experimental Results

I
N this chapter we will introduce results of our approach. First the robotic platform

used and its configuration is introduced, followed by detailed results for two differ-

ent indoor scenarios. The performance of our method will be evaluated and known

issues will be discussed.

5.1. Hardware

For our experiments the existing PAL1 robot was modified. Originally based on an

electric wheelchair a frame is mounted on this platform in order to allow to fix a LIDAR

at a height of around 1.5 meters above ground with an exchangeable tilting angle. Figure

5.1 shows a the used robot. The sensor on top of the frame is a SICK LMS 291-S05 Laser-

rangefinder. A second LIDAR of the same type is mounted on the robot with a horizontal

orientation to get additional data for performance comparisons. The detailed character-

istics of the rangefinder’s model used are listed in Table 5.1 (SICK AG Product Specifica-

tions).

SICK LMS 291 Specifications
field of view up to 180 deg
scanning rate up to 75 Hz
angular resolution 1, 0.5 or 0.25 deg
maximum range 81 meters
accuracy few centimeters
dimensions 18.5 x 15.6 x 21.0 cm
weight 4.5 kg
supply 20W @ 24VDC

Table 5.1. Sick LMS 291 Specifications



5.1 HARDWARE

Figure 5.1. Modified PAL1 robot used for experiments. The top SICK LMS was the
main sensor used in the experiments. The horizontally oriented LIDAR in the front
was used to collect data for performance comparison.

A camera equipped with a wide angle lens is mounted close to the scanner with a for-

ward orientation so that the field of view from both sensors partially overlap. The camera

used is a Dragonfly2 from Point Gray Research Inc. It has a maximal resolution of 640x480

pixels and is using an IEEE1394a interface. All sensor data was recorded on a standard

Laptop-PC running on Linux. The data from both SICK LMS were transferred using RS422

with a rate of 500 kbaud through a serial-to-USB converter.
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5.1 HARDWARE

5.1.1. Extrinsic camera-LIDAR calibration

Calibration between the LIDAR and camera was performed following the method

introduced in Section 3.5.1 resulting in the following extrinsic parameters

T =

 0.036
−0.1
−0.05

meter R =

 0.1811
−0.01238
−0.01736

radian

Figure 5.2. Camera-LIDAR calibration results The LIDAR is located below the cam-
era slightly shifted to the left.

Even though no ground truth is available, the manually measured translation is con-

sistent with the one the calibration process returned. Projection of the rangefinder data

onto the camera image shows excellent compliance for the rotational parameters as shown

in Figure 5.2.

5.1.2. LIDAR calibration

The calibration of the LIDARs position is performed as describes in Section 3.5.2. Cam-

era images of a checkerboard placed on the ground are captured and the cameras pose is

estimated. To improve the result, several images were captured, height, roll and pitch were

calculated and the mean was taken. Then the LIDAR’s pose was estimated using the results

of the previous section. The following parameters were estimated

h = 1.46 meter φ = 0.381◦ θ = 18.92◦
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5.3 3D-MAP OF THE CSIE BUILDING: FOURTH FLOOR

5.2. Software Implementation

The drivers used to access the LIDAR and camera were integrated using linux. To

operate the SICK LMS laser range finder the The Sick LIDAR Matlab/C++ Toolbox was used

which is an open source toolbox branched from the source code used by one of the teams

participating in the DARPA urban challenge (Derenick et al., 2009). The camera was con-

trolled using the libdc1394 package which is an open source driver for fire wire cameras

that follow the IIDC standard. The data was recorded and stored with timestamps to allow

synchronization.

The actual implementation of the methods described in the previous chapters was

done using matlab. In order to speed up the computationally expensive ICP algorithm,

this part was implemented in C++ and linked to matlab using a mex-functions. The time

to record the two data sets that will be introduced in in Section 5.3 and 5.4 was around 3

minutes while the processing took less than 30 seconds on a standard laptop computer.

5.3. 3D-map of the CSIE Building: Fourth floor

A 3D map using one 2D LIDAR was generated during a run with the PAL1 robot in

the fourth floor of the Computer Science and Information Engineering Building on NTU

campus. It consists of ∼175,000 points generated from 515 scans with a path length of ap-

proximately 135 meters. The complete map is shown in Figure 5.3. If color information

from the camera was available it was mapped to the corresponding point. Since the open-

ing angle of the camera is significantly smaller than the 180◦ field of view from the LIDAR

a part of the points does not have color information. These points are displayed in green.

Interesting details in the 3D model are marked by capital letters on the map. First to

mention is the matching performance. The environment has one large loop so the accu-

racy can be evaluated how good the locations that close the loop match together. Figure

5.4 shows the region. The robot was starting on the left side and after completing the loop

entering the same area again. Orientation and position match reasonably good, given that

ICP can introduce minor errors for each matching which accumulate over time, as dis-

cussed in previous chapters. The loop is almost closed after processing of more than 500

scans.

Figure 5.5(a), 5.5(b) and 5.5(e) correspond to the area of the hallway marked A in the

overall map. On the left several door are clearly visible, on the right a balcony is visible
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5.3 3D-MAP OF THE CSIE BUILDING: FOURTH FLOOR

Starting

Location

Arrows indicate the robots moving direction

Goal

Location

A

B

 C

Figure 5.3. 3D map of the 4th floor, CSIE building generated using only one 2D
LIDAR. Color information is added when available - otherwise points are shown
in green. The longer side of the rectangle measures approximately 40 meters, the
shorter one 30 meters.

through large glass doors. The map was generated during night, therefore the balcony

appears dark and the different artificial lights lead to different colors depending on the

lightning. Figure 5.5(d) corresponds to 5.5(f) - an area with several Boxes stacked in the

hallway. Figure 5.5(c) shows stairs leading to the next floor. Boxes and Stairs are both

close to the area marked by B in the large map. The missing data of the ground in area

C originate in the turning around the narrow corner. Since the LIDAR ’sees’ the ground

approximately 4.5 meters in front of the robot turns with too small turning radius lead to

this effect.
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5.3 3D-MAP OF THE CSIE BUILDING: FOURTH FLOOR

Figure 5.4. Fourth Floor CSIE building, area of loop closing. Robots starting lo-
cation was on the left, and after completing the loop it comes back from the right
side. Points belonging to the start of the path in light grey. Points recorded once ro-
bot returns to the same position in dark grey. The while line indicates the LIDARs
trajectory. Orientation and Position match reasonably good after around 500 scan
matching steps.
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5.3 3D-MAP OF THE CSIE BUILDING: FOURTH FLOOR

(a) (b)

(c) (d)

(e) (f)

Figure 5.5. Details from the 3D map generated in the fourth floor of the CSIE build-
ing. (a), (c) and (e) show the same scene, as well as (b) and (e). 36



5.3 3D-MAP OF THE CSIE BUILDING: FOURTH FLOOR

Performance Comparison. Besides the loop close we evaluate the performance by

comparing the estimated velocity of the robot using the results from the tilted scanner and

the horizontally oriented one. Figure 5.6(a) shows the forward velocity. The tilted scanner

underestimates the velocity several times for short periods when passing areas with not

enough vertical structures. The angular velocities as shown in figure 5.6(b) are very similar,

just the ones from the tilted scanner being slightly more noisy due to the shorter range. At

last the orientations are plotted in figure 5.6(c) which match good, only leaving a slight

difference after more than 500 scan matchings.
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Figure 5.6. Comparisons between tilted and horizontal LIDAR.
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5.4 3D-MAP OF THE CSIE BUILDING: FIRST FLOOR

5.4. 3D-map of the CSIE Building: First floor

A 3D model from the first floor of the Computer Science and Information Engineering

Building on NTU campus was created by moving the robot once through the environment.

It consists of more than 600 scans and ∼ 205,000 points. This area is very interesting since

it includes a variety of different challenging passages like narrow hallways with sparse

vertical features, hallways with windows on one side, areas with convex walls, areas with

low structures like benches and also areas with negative obstacles. Figure 5.7 gives an

overview over the area

Goal

Location

Start

Location

Arrows indicate the robots

moving direction,

red line indicates the robots path

A

B

D

C

Figure 5.7. 3D model of the first floor, CSIE building. Color data from the camerea
was mapped to the image where possible
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5.4 3D-MAP OF THE CSIE BUILDING: FIRST FLOOR

Figure 5.8. Detail of the 3D Model, first floor, CSIE building. Color data from the
camera was mapped to the image where possible. The two camera images below
the 3D model show the same scene as in the large picture. Details like the stairs,
posters on the wall left to the stairs and a bench are clearly visible in the 3D map.
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5.4 3D-MAP OF THE CSIE BUILDING: FIRST FLOOR

Figure 5.8 and Figure 5.9 show several details from the 3D map generated. For each

of the snapshots of the 3D map a corresponding camera image is shown below. Figure 5.8

shows details of the map like stairs, a bench and even posters on a wall are visible besides

the stairs. The first image of Figure 5.9 shows an area close to the CSIE buildings main

entrance (marked as B in the overall map). Two flags in front of a wall are clearly visible.

The second image in the first row shows a hallway. In the foreground windows are visible

(including erroneous total reflections at the height of the sensor). Left of a door in the

middle of the image is a fire extinguisher that is visible in the 3D model as well as in the

camera image. Even small details are captured in the map. The two snapshots of the map

below show the entrance of the building from different angles.
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5.4 3D-MAP OF THE CSIE BUILDING: FIRST FLOOR

Figure 5.9. Details from the 3D map generated in the first floor of the CSIE building.
First and third row show the 3D model generated, the camera images below show
the same scene for comparison purposes. Details in the Text. 41



5.4 3D-MAP OF THE CSIE BUILDING: FIRST FLOOR

5.4.1. Performance

To evaluate the performance we compare the results from both horizontal and tilted

LIDAR. Figure 5.10(a) plots the estimated speed during the track in the first floor. The

problematic area marked by A in the map corresponds roughly to the scans 100-150 which

shows that in this area the tilted scanner has problems estimating the forward movement.

The angular velocities are shown in figure 5.10(b). They are comparable with the results

from the tilted one being slightly more noisy, which is within expectations since only a

shorter segment of the walls on both sides are visible. Figure 5.10(c) shows the robots

orientation - around index 100 a small difference between the both scanners occur (corre-

sponding to area A while the difference gets larger around index 400.

5.4.2. Issues

The most difficult region to map in the first floor is the area marked with A in the

model. This region has windows on the right side while on the left side there is a feature-

less wall. Windows might return false LIDAR readings since the light of the laser might

either go thru, be completely or partially reflected. Therefor in this area the robot receives

erroneous measurements from one side, and the other side has no features. While the ori-

entation error introduced is not too large the estimation of the forward movement looses

accuracy as clearly seen in Figure 5.10(a).
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Figure 5.10. Comparisons between tilted and horizontal LIDAR.
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5.5 GRIDMAPS

5.5. Gridmaps

Figure 5.11 show two grid maps derived from the scanner data. The left figure is

calculated from the 3D model generated by the tilted scanner by finding the highest point

for each grid. The map is a surface map representing the height of the environment in each

grid.

The map on the right was generated by performing a ray casting operation for each

laser beam of the horizontal LIDAR. Each ray traversing a grid decreases the probability

that this grid cell is occupied, while the endpoint of the beam increases the probability. The

colors indicate the probability that a grid is occupied or not (and therefore traversable).

Given that both type of maps can be used for robot navigation one can clearly see

that the one generated by the horizontal LIDAR can not see several objects (negative and

positive ones) that are perceived by the tilted one.

50 100 150 200 250 300

50

100

150

200

250

300

(a) Occupancy grid map generated by the horizontal
LIDAR. For each beam a ray casting operation changes
the probability in the grids traversed or hit accord-
ingly. Black corresponds to obstacles, green to travers-
able grids and white to unknown grids.

negative

Obstacles

(b) Grid map generated by finding the highest
point in each grid from the 3D point model built
by the tilted LIDAR. Negative obstacles are marked
in blue. The y were found by identifying beam-
endpoints that were below ground level. For these
beams a raycasting operation was used to identify
gridcells that are below groundlevel.

Figure 5.11. Comparison of grid maps generated by the tilted and horizontal LI-
DAR. The right map corresponds to the horizontal oriented scanner and shows
only one 2D slice thru the environment. Negative obstacles and obstacles out of
this sliceplane are not visible in this map, while the gridmap generated with the
tilted scanner shows all these obstacles. Gridsize in both maps is 0.2 meters.
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CHAPTER 6

Conclusion

P
ERCEPTION is a key challenge in mobile robotics. This thesis introduced a new

method to generate three-dimensional environment models using only one

fixed 2D Laser rangefinder. Localizing the sensor in 3D was made possible

by making assumptions which postulate prior knowledge about man-made

environments.

6.1. Conclusion

This thesis proposed a method to localize a mobile robot in 3D while constructing

a 3D environment map using only one fixed 2D LIDAR. Compared with localization and

mapping methods that use one horizontally oriented LIDAR, this approach allows to sense

objects that are out of the horizontal sensors slice plane as well as negative obstacles. Our

approach has a localization performance comparable with 2D approaches while allowing

to capture richer information of the environment.

The 3D environment representation perceived allows object recognition which is hard

in 2D due the sparse nature of the data. Compared to other 3D mapping methods this

method requires less hardware therefore significantly reducing weight, size, cost and power

consumption and allows continuous capturing of data.

6.2. Future Work

Several aspects of this work can be further explored. One aspect is the possible release

of some assumptions made by adding additional sensors.

Relieve of Assumptions. The known-height of the LIDAR assumption could be dropped

given an Inertial Measurement Unit (IMU) is added to the robot. If the IMU could sense



6.2 FUTURE WORK

the LIDARs orientations accurately, the sensors height for each scan could be estimated by

using geometrical constraints given flat ground that is visible in the scan.

Taking the robot from indoor environments to urban environments might uncover

new interesting challenges. When leaving buildings it might be necessary to drop the as-

sumption of flat ground. Given an gradually built elevation map, fixed height of the laser

rangefinder and an IMU the robots pose in 3D could still be estimated even it is not oper-

ating on flat ground. Since the estimation of the ground height is likely to be only locally

accurate, prior knowledge like a large-scale street map with elevation information could

be used to correct accumulated errors.

Loop Closing. Currently the work introduced is not able to detect and close loops.

This is one important building block to enable reliable large scale SLAM. A Graph-SLAM

based approach could be implemented. A future loop detection mechanism might work

better than the normal 2D case due the richer 3D information available.

Multiple Hypotheses. The sampling based approach introduced in Section 4.3.4

can be used to keep track of multiple hypotheses in the matching stage. Ambiguities in the

environment can lead to several results, each of them providing a good matching result.

Treating all these results as valid hypotheses allows to use them in offline optimization

method. Assuming a locally smooth trajectory (temporal as well as spatial) could allow

to pick the correct hypotheses in an offline stage. Further prior information about the

environment could be applied to pick the hypotheses that models the environment best.

Optimization using prior knowledge. This thesis makes already use of prior knowl-

edge about the environment when assuming the ground is flat and that there are vertical

structures. The 3D point clouds generated show that the representation of walls is locally

accurate, but small errors accumulate leading to slightly curved or inclined walls. Walls

in buildings are almost exclusively vertical planes - therefore optimization methods could

use this information to correct localization errors - and could reduce the expensive point-

representation into a representation by planes.
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