請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90065
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 單秋成 | zh_TW |
dc.contributor.advisor | Chow-Shing Shin | en |
dc.contributor.author | 黃康祐 | zh_TW |
dc.contributor.author | Kang-Yu Huang | en |
dc.date.accessioned | 2023-09-22T17:16:02Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | Fang, Y., et al., Monitoring of seawater immersion degradation in glass fibre reinforced polymer composites using quantum dots. Composites Part B: Engineering, 2017. 112: p. 93-102.
Prusty, R.K., D.K. Rathore, and B.C. Ray, Water‐induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature. Journal of Applied Polymer Science, 2018. 135(11): p. 45987. Boisseau, A., P. Davies, and F. Thiebaud, Sea water ageing of composites for ocean energy conversion systems: influence of glass fibre type on static behaviour. Applied Composite Materials, 2012. 19: p. 459-473. Hsieh, T., et al., The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. Journal of Materials Science, 2011. 46: p. 7525-7535. Diamanti, K. and C. Soutis, Structural health monitoring techniques for aircraft composite structures. Progress in Aerospace Sciences, 2010. 46(8): p. 342-352. Cai, J., et al., Structural health monitoring for composite materials, in Composites and their applications. 2012, IntechOpen. Giurgiutiu, V., Structural health monitoring of aerospace composites. 2015. Buggisch, C., et al., Strain sensing in GFRP via fully integrated carbon nanotube epoxy film sensors. Composites Part C: Open Access, 2021. 6: p. 100191. Moy, P. and F. Karasz, Epoxy‐water interactions. Polymer Engineering & Science, 1980. 20(4): p. 315-319. Zhang, Y., R. Adams, and L.F. da Silva, Absorption and glass transition temperature of adhesives exposed to water and toluene. International Journal of Adhesion and adhesives, 2014. 50: p. 85-92. Viana, G., et al., A review on the temperature and moisture degradation of adhesive joints. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2017. 231(5): p. 488-501. Budhe, S., et al., An updated review of adhesively bonded joints in composite materials. International Journal of Adhesion and Adhesives, 2017. 72: p. 30-42. Al-Sabagh, A., et al., Monitoring moisture damage propagation in GFRP composites using carbon nanoparticles. Polymers, 2017. 9(3): p. 94. Kumagal, S. and N. Yoshimura, Impacts of thermal aging and water absorption on the surface electrical and chemical properties of cycloaliphatic epoxy resin. IEEE Transactions on Dielectrics and Electrical Insulation, 2000. 7(3): p. 424-431. Bouhamed, A., et al., Assessing the electrical behaviour of MWCNTs/epoxy nanocomposite for strain sensing. Composites Part B: Engineering, 2017. 128: p. 91-99. Katnam, K., et al., Characterisation of moisture-dependent cohesive zone properties for adhesively bonded joints. Engineering Fracture Mechanics, 2010. 77(16): p. 3105-3119. Xu, D., et al., Damage mode identification of adhesive composite joints under hygrothermal environment using acoustic emission and machine learning. Composite structures, 2019. 211: p. 351-363. Meng, M., et al., Effects of hygrothermal stress on the failure of CFRP composites. Composite Structures, 2015. 133: p. 1024-1035. Gibhardt, D., et al., Effects of hygrothermal ageing on the interphase, fatigue, and mechanical properties of glass fibre reinforced epoxy. Fibers, 2019. 7(6): p. 55. Karalekas, D., J. Cugnoni, and J. Botsis, Monitoring of hygrothermal ageing effects in an epoxy resin using FBG sensor: A methodological study. Composites science and technology, 2009. 69(3-4): p. 507-514. Dewimille, B. and A. Bunsell, Accelerated ageing of a glass fibre-reinforced epoxy resin in water. Composites, 1983. 14(1): p. 35-40. Wang, Y., et al., Thermal-ageing characteristics of dry-type transformer epoxy composite insulation. High Performance Polymers, 2020. 32(7): p. 741-752. Eftekhari, M. and A. Fatemi, Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects. Polymer Testing, 2016. 51: p. 151-164. Jiang, X., et al., Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: Moisture diffusion characteristics. Composites Part A: Applied Science and Manufacturing, 2014. 57: p. 49-58. Krauklis, A.E., A.I. Gagani, and A.T. Echtermeyer, Hygrothermal aging of amine epoxy: reversible static and fatigue properties. Open Engineering, 2018. 8(1): p. 447-454. Carbas, R., et al., Effect of post-cure on the glass transition temperature and mechanical properties of epoxy adhesives. Journal of Adhesion Science and Technology, 2013. 27(23): p. 2542-2557. Barbosa, A., L. Da Silva, and A. Öchsner, Hygrothermal aging of an adhesive reinforced with microparticles of cork. Journal of Adhesion Science and Technology, 2015. 29(16): p. 1714-1732. Obitayo, W. and T. Liu, A review: Carbon nanotube-based piezoresistive strain sensors. Journal of Sensors, 2012. 2012. Frank, S., et al., Carbon nanotube quantum resistors. science, 1998. 280(5370): p. 1744-1746. Bachtold, A., et al., Aharonov–Bohm oscillations in carbon nanotubes. Nature, 1999. 397(6721): p. 673-675. Berger, C., et al., Multiwalled carbon nanotubes are ballistic conductors at room temperature. Applied Physics A, 2002. 74: p. 363-365. Zamkov, M., et al., Probing the intrinsic conductivity of multiwalled carbon nanotubes. Applied physics letters, 2006. 89(9): p. 093111. Kirkpatrick, S., Percolation and conduction. Reviews of modern physics, 1973. 45(4): p. 574. Gojny, F.H., et al., Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 2006. 47(6): p. 2036-2045. Wang, Y., et al., Piezoresistive response of carbon nanotube composite film under laterally compressive strain. Sensors and Actuators A: Physical, 2018. 273: p. 140-146. Xiao, T., et al., 3D printing of flexible strain sensor array based on UV‐curable multiwalled carbon nanotube/elastomer composite. Advanced Materials Technologies, 2021. 6(1): p. 2000745. Tang, Z.-H., et al., Comprehensive evaluation of the piezoresistive behavior of carbon nanotube-based composite strain sensors. Composites Science and Technology, 2021. 208: p. 108761. Bregar, T., et al., Carbon nanotube embedded adhesives for real-time monitoring of adhesion failure in high performance adhesively bonded joints. Scientific Reports, 2020. 10(1): p. 16833. Sanli, A., et al., Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sensors and Actuators A: Physical, 2017. 254: p. 61-68. Shen, J., et al., Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites. Composites science and technology, 2015. 115: p. 1-8. Tian, C.J., et al., Smart properties of carbon nanotube-epoxy composites. Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications, 2020. 234(11): p. 1409-1416. Barberio, M., et al., Electric resistivity of multi-walled carbon nanotubes at high temperatures. Surface science, 2007. 601(13): p. 2814-2818. Mohiuddin, M. and S. Van Hoa, Electrical resistance of CNT-PEEK composites under compression at different temperatures. Nanoscale research letters, 2011. 6(1): p. 1-5. Li, Q., et al., Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. Express Polym Lett, 2009. 3(12): p. 769-777. Sung, D., et al., Ab initio study of the effect of water adsorption on the carbon nanotube field-effect transistor. Applied Physics Letters, 2006. 89(24): p. 243110. Li, J., et al., Carbon nanotube sensors for gas and organic vapor detection. Nano letters, 2003. 3(7): p. 929-933. Zhao, J., et al., Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 2002. 13(2): p. 195. Zahab, A., et al., Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Physical Review B, 2000. 62(15): p. 10000. Sanli, A., et al. Study of the humidity effect on the electrical impedance of MWCNTs/epoxy nanocomposites. in Proceedings of the Conference: 9th International Workshop on Impedance Spectroscopy, Chemnitz, Germany. 2016. Zhang, H., E. Bilotti, and T. Peijs, The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review. Nanocomposites, 2015. 1(4): p. 167-184. Thostenson, E.T. and T.-W. Chou, Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks. Nanotechnology, 2008. 19(21): p. 215713. Bian, B., et al., Thermal‐aging characteristics of epoxy/glass fiber composite materials for dry‐type air‐core reactors. Polymer Composites, 2021. 42(8): p. 3773-3785. Yang, Y., et al., Electrical Properties and Lifetime Prediction of an Epoxy Composite Insulation Material after Hygrothermal Aging. Polymers, 2023. 15(8): p. 1942. Addanki, S., I.S. Amiri, and P. Yupapin, Review of optical fibers-introduction and applications in fiber lasers. Results in Physics, 2018. 10: p. 743-750. 蔡曉信 and 葉名倉. 光纖(Optical Fiber). 科學Online 2009 7月29日 [cited 2023 4月19日]; Available from: https://highscope.ch.ntu.edu.tw/wordpress/?p=2929. 鼎志電子股份有限公司. Fiber Optic Types : Multimode and Singlemode. 2023 [cited 2023 4月19日]; Available from: https://www.dintek.com.tw/index.php/Articles/Fiber-optic-types-multimode-and-singlemode.html. 曙曜科技股份有限公司. Optical Power 光功率. 2023 [cited 2023 4月19日]; Available from: https://www.dawnraytech.com.tw/blog/optical-power-introduction/. 許世昌. 光纖光柵. 科學Online 2017 7月26日 [cited 2023 4月19日]; Available from: https://highscope.ch.ntu.edu.tw/wordpress/?p=76715. Murayama, H., et al., Strain monitoring of a single-lap joint with embedded fiber-optic distributed sensors. Structural Health Monitoring, 2012. 11(3): p. 325-344. Othonos, A., Fiber bragg gratings. Review of scientific instruments, 1997. 68(12): p. 4309-4341. Lin, C.-L., 微結構材料的光-機械應用: 1) 光纖布拉格光柵感測器 2) 雷射趨動高分子微感測器. 2004. Güemes, A., et al., Structural health monitoring for advanced composite structures: a review. Journal of Composites Science, 2020. 4(1): p. 13. Yeager, M., et al., Assessment of embedded fiber Bragg gratings for structural health monitoring of composites. Structural Health Monitoring, 2017. 16(3): p. 262-275. Mieloszyk, M., K. Majewska, and W. Ostachowicz, Application of embedded fibre Bragg grating sensors for structural health monitoring of complex composite structures for marine applications. Marine Structures, 2021. 76: p. 102903. Mieloszyk, M. and W. Ostachowicz, Moisture contamination detection in adhesive bond using embedded FBG sensors. Mechanical Systems and Signal Processing, 2017. 84: p. 1-14. Fan, Z., et al., Structural health monitoring of metal-to-glass–ceramics penetration during thermal cycling aging using femto-laser inscribed FBG sensors. Scientific Reports, 2020. 10(1): p. 12330. Mohanta, S., et al., Insight into the nondestructive performance evaluation of fiber‐reinforced polymer composite laminate immersed in produced water using embedded fiber Bragg grating sensor. Polymer Composites, 2021. 42(9): p. 4717-4727. Shin, C.-S. and T.-C. Lin, Hygrothermal Damage Monitoring of Composite Adhesive Joint Using the Full Spectral Response of Fiber Bragg Grating Sensors. Polymers, 2022. 14(3): p. 368. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90065 | - |
dc.description.abstract | 複合材料由於出色的抗腐蝕能力,被用於高溫高濕等惡劣作業環境的器具材料。本研究旨在探討以電阻監測複合材料濕熱老化程度的可行性,將環氧樹脂混和奈米碳管作為基材,製成具導電性的玻纖複材,分別放置於高濕度、低濕度、高溫低濕、熱水中不同的環境,並進行拉伸測試,監測其電阻變化,輔以內埋布拉格光纖光柵的頻譜變化。
研究發現試片浸泡熱水在前4天顯著頻譜往長波長飄移、電阻上升,之後逐漸穩定,且回室溫後頻譜波形、飄移、電阻皆未恢復為浸泡熱水前的狀態;另外,浸泡熱水4天後降回室溫的電阻接近60℃時的,類似高溫低濕後降溫的表現,而30、75天後降溫期間電阻上升一致的程度。強度也是在浸泡熱水4天後顯著下降,浸泡熱水30天與75天僅比浸泡熱水4天些許下降。表示電阻有感測溫濕老化發展的潛力。未來進行更多中短天期的實驗或許能建立電阻變化與強度下降的關聯。 | zh_TW |
dc.description.abstract | Glass-fiber reinforced composite are used as materials for appliances in harsh operating environments such as high temperature and high humidity due to their excellent corrosion resistance. This study aims to investigate the feasibility of monitoring the degree of hygrothermal aging of composite by electrical properties. Epoxy resin mixed with carbon nanotubes were used as the substrates to produce electrically conductive glass-fiber-reinforced polymers, which were placed in different environments, such as high-humidity, low-humidity, high-temperature, low-humidity, and hot water respectively, and then were subjected to tensile tests to monitor the changes in electrical resistance, which were supplemented by the changes in the spectrum of the embedded Fiber Bragg Gratings.
It was found that the spectrum of the specimen immersed in hot water drifted towards long wavelengths and the resistance increased in the first 4 days, and then stabilized gradually, and the spectral waveforms, drift, and resistance did not return to the state before immersion in hot water after returning to the room temperature. In addition, the resistance at room temperature after 4 days of immersion in hot water is close to that at 60°C, which is similar to that after high temperature and low humidity treatmeant, and the resistance rises to the same degree during the cooling period after 30 or 75 days. The strength also decreases significantly after 4 days of immersion in hot water, and it only decreases slightly after 30 and 75 days of immersion compared with 4 days of immersion in hot water. This indicates that the resistance has the potential to sense the development of hygrothermal aging. In the future, more short or medium term of experiments may be able to establish the correlation between resistance change and strength decrease. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:16:02Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:16:02Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 第二章 文獻回顧 3 2.1 複合材料的濕熱老化機制 3 2.2 以電性監測複材老化 3 2.3 奈米碳管複合材料 4 2.3.1 奈米碳管 4 2.3.2 奈米碳管網路的電阻性質 4 2.3.3 奈米碳管複合材料的壓阻效應(piezoresistance effect) 5 2.3.4 溫度對奈米碳管複合材料電阻的影響 6 2.3.5 濕度對奈米碳管複合材料電阻的影響 6 2.3.6 奈米碳管應用於複合材料損傷監測 6 2.4 布拉格光纖光柵 7 2.4.1 光纖簡介 7 2.4.2 光通信功率單位 8 2.4.3 布拉格光纖光柵的原理 9 2.4.4 布拉格光纖光柵的響應 9 2.4.5 布拉格光纖光柵的應用 11 2.5 文獻回顧總結 12 第三章 實驗材料與設備 13 3.1 試片材料 13 3.2 試片製造相關設備 14 3.3 試驗與量測設備 17 第四章 實驗方法與流程 21 4.1 試片製作方法 21 4.1.1 真空輔助樹脂轉注布置 21 4.1.2 混和樹脂與奈米碳管 23 4.1.3 固化及後續配置準備 23 4.2 試片的材料參數 24 4.3 頻譜光路 24 4.4 實驗存放處理 25 4.4.1 浸泡熱水處理 25 4.4.2 乾燥處理 25 4.4.3 高溫低濕處理 26 4.4.4 實驗存放處理期間電阻量測方式 26 4.5 拉伸測試 26 4.6 試片與實驗處理代號 26 4.7 實驗架構 27 4.7.1 樹脂固化的頻譜變化 27 4.7.2 探討濕氣影響 27 4.7.3 老化監測 28 4.7.4 內埋碳纖維紙對電阻監測的幫助 29 第五章 實驗結果與討論 31 5.1 固化導致的頻譜變化 31 5.2 濕氣的影響 31 5.2.1 存放期間 31 5.2.2 拉伸測試 33 5.2.3 濕氣影響總結 40 5.3 老化監測 40 5.3.1 高溫低濕處理的影響 40 5.3.2 浸泡熱水處理的影響 47 5.3.3 不同處理後拉伸破斷外觀 54 5.3.4 老化監測總結 69 5.4 內埋碳纖維紙對電阻監測的幫助 69 5.4.1 不同處理期間的電阻變化 69 5.4.2 拉伸測試 72 5.4.3 內埋碳纖維紙試片總結 74 第六章 結論與未來展望 75 參考文獻 76 附錄 80 | - |
dc.language.iso | zh_TW | - |
dc.title | 以導電性與布拉格光柵監測玻纖複材的濕熱老化 | zh_TW |
dc.title | Hygrothermal aging monitoring of glass-fiber reinforced composite by conductivity and FBG | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 任貽明;沈銘原;林志郎 | zh_TW |
dc.contributor.oralexamcommittee | Yi-Ming Jen;Ming-Yuan Shen;Chih-Lang Lin | en |
dc.subject.keyword | 玻璃纖維複合材料,濕熱老化,奈米碳管,布拉格光纖光柵,電阻監測, | zh_TW |
dc.subject.keyword | glass-fiber reinforced composite,hygrothermal aging,carbon nanotubes,Fiber Bragg Gratings,electricity monitoring, | en |
dc.relation.page | 141 | - |
dc.identifier.doi | 10.6342/NTU202303943 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 27.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。