Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90060
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃育熙zh_TW
dc.contributor.advisorYu-Hsi Huangen
dc.contributor.author陳奕安zh_TW
dc.contributor.authorYi-An Chenen
dc.date.accessioned2023-09-22T17:14:48Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] J. Kim, G.Y. Yun, J.H. Kim, J. Lee, J.H. Kim, “Piezoelectric electro-active paper (EAPap) speaker.”, Journal of Mechanical Science and Technology, vol. 25(11), pp. 2763-2768, 2011.
[2] P. M. Morse, “Acoustical Society of America, & American Institute of Physics.”, Vibration and Sound, vol. 468, McGraw-Hill New York, 1948.
[3] J. Curie, a. C. P., “Development by pressure of polar electricity in hemihedral crystals with inclined faces.”, Bull. soc. min. de France, pp. 90-102, 1880.
[4] W. G. Cady, “Piezoelectricity.”, McGraw-Hill Book Company, Inc., New York, 1946.
[5] W. P. Mason, “Piezoelectric crystals and their applications to ultrasonics.”, New York: Can Nostrand, 1950.
[6] H. F. Tiersten, “Linear piezoelectric plate vibrations: elements of the linear theory of piezoelectricity and the vibrations piezoelectric plates.”, Springer, 2013.
[7] H. Jaffe, “Piezoelectric Ceramics.”, 1971.
[8] R. Mindlin, High frequency vibrations of piezoelectric crystal plates.”, International Journal of Solids and Structures, vol. 8(7), pp. 895-906, 1972.
[9] IEEE Ultrasonics Ferroelectrics and Frequency Control Society, in ANSI/IEEE Std 176, 1987.
[10] N. N. Rogacheva, “The theory of piezoelectric shells and plates.”, CRC press, 2020.
[11] S. Chang, B. Du, J. Lin, “Electro-elastic modeling of annular piezoceramic actuating disk transducers.”, Journal of Intelligent Material Systems and Structures, vol. 10(5), pp. 410-421. 1999.
[12] 林育志,「壓電元件於不同介質中的振動特性研究與實驗量測」,國立臺灣大學機械工程所碩士論文,2004。
[13] 何祥瑋,「壓電圓盤與壓電圓環共振特性的理論分析與實驗量測」,國立臺灣大學機械工程所碩士論文,2005。
[14] C. H. Huang, “Free vibration analysis of the piezoceramic bimorph with theoretical and experimental investigation.”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 52(8), pp. 1393-1403, 2005.
[15] 黃育熙,「壓電陶瓷平板,薄殼,與雙晶片三維耦合動態特性之實驗量測,數值計算與理論解析」,國立臺灣大學機械工程所碩士論文,2009。
[16] 許松逸,「多層壓電圓盤及圓環複合等向性材料三維振動特性之理論解析、數值分析與實驗量測」,國立臺灣科技大學機械工程所碩士論文,2018。
[17] W. Leissa, “Vibration of plates, NASA SP-160.”, US Washington. A. W. Leissa, Sound and Vibration, vol. 56, pp. 313, 1978.
[18] D. J. Gorman, “Free vibration analysis of the completely free rectangular plate by the method of superposition.”, Journal of Sound and Vibration, vol. 57(3), pp. 437-447, 1978.
[19] C. S. Kim, P. G. Young, S. M. Dickinson, “On the flexural vibration of rectangular plates approached by using simple polynomials in the Rayleigh-Ritz method.”, Journal of Sound and Vibration, vol. 143(3), pp. 379-394, 1990.
[20] D. J. Gorman, “A general solution for the free vibration of rectangular plates with arbitrarily distributed lateral and rotational elastic edge support.”, Journal of Sound and Vibration, vol. 174(4), pp. 451-459, 1994.
[21] D. J. Gorman, “Vibration analysis of plates by the superposition method.”, 1999.
[22] 吳亦莊,「理論解析與實驗量測壓電平板的面外振動及特性探討」,國立臺灣大學機械工程所碩士論文,2009。
[23] Y. H. Huang, C. C. Ma, “Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells.”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 59(4), pp. 785-798, 2012.
[24] 王惠儀,「應用樑函數法於壓電平板撓性邊界之振動特性分析」,國立臺灣科技大學機械工程所碩士論文,2019。
[25] 陳新承,「可變剛性邊界應用於壓電平板理論之能量擷取系統」,國立臺灣大學機械工程所碩士論文,2021。
[26] P. Laura, C. Rossit, S. La Malfa, “Transverse vibrations of composite, circular annular membranes: exact solution.”, Journal of Sound and Vibration, vol. 216(1), pp. 190-193, 1998
[27] M. Jabareen, M. Eisenberger, “Free vibrations of non-homogeneous circular and annular membranes.”, Journal of Sound and Vibration, vol. 240(3), p. 409-429 , 2001.
[28] S. S. Rao, “Vibration of continuous systems.”, New Jersey: Wiley, 2007.
[29] R. A. Gingold, J. J. Maraghan, “Smoothed particle hydrodynamics: theory and applications to non-spherical stars.”, Monthly Notices of the Royal Astronomical Society, vol. 181, pp. 375-389, 1977.
[30] T. Belystcho, Y. Lu, L. Gu, “Element free Galerkin methods.”, International Journal for Numerical Methods in Engineering, vol. 37, pp. 229-256, 1994.
[31] W. K. Liu, S. Jun, Y. F. Zhang, “Reproducing kernel particle methods.”, International Journal for Numerical Methods in Engineering, vol. 20, pp. 1081-1106, 1995.
[32] Y. X. Mukherjee, S. Mukherjee, “The boundary node method for potential problems.”, International Journal for Numerical Methods in Engineering, vol. 40, pp. 797-815, 1997.
[33] S. N. Atluri, T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics.”, Computational Mechanics, vol. 22, pp.117-127, 1998.
[34] C. S. Chen, Y. F. Rashed, M. A. Golberg, “A mesh-free method for linear diffusion equations.”, Numerical Heat Transfer, Part B, vol. 33, pp. 469-486, 1998.
[35] W. Chen, “Meshfree boundary particle method applied to Helmholtz problems.”, Engineering Analysis with Boundary Elements, vol. 26(7), pp. 557-581, 2002.
[36] V. D. Kupradze, “A method for the approximate solution of limiting problems in math- ematical physics.”, Computational Mathematics and Mathematical Physics, vol. 4, pp. 199- 205, 1964.
[37] A. Karageorghis, “The method of fundamental solutions for the calculation of the eigen- values of the Helmholtz equation.”, Applied Mathematics Letters, vol. 14, pp. 837-842, 2001.
[38] J. T. Chen, I. L. Chen, Y. T. Lee, “Eigensolutions of multiply connected membranes using the method of fundamental solutions.”, Engineering Analysis with Boundary Elements, vol. 29, pp. 166-174, 2004.
[39] C. C. Tsai, et al., “The method of fundamental solutions for eigenproblems in domains with and without interior holes.”, Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 462(2069), pp. 1443-1466, 2006.
[40] E. Trefftz. “Ein gegenstuck zum ritzschen verfahren.” In Proceedings of the 2nd International Congress of Applied Mechanics, pages 131-137, Zurich, 1926.
[41] C. A. Brebbia, J. C. F. Telles, L. C. Wrobel, “Boundary element techniques: Theory and applications in engineering.” Springer Science & Business Media, 1984.
[42] J. Streng, “Calculation of the surface pressure on a vibrating circular stretched membrane in free space.”, The Journal of the Acoustical Society of America, vol. 82(2), pp. 679-686, 1987.
[43] T. Mellow, L. Kärkkäinen, “On the sound field of a circular membrane in free space and an infinite baffle.”, The Journal of the Acoustical Society of America, vol. 120(5), pp. 2460-247, 2006.
[44] Y. H. Huang, H. Y. Chiang, “Vibrational mode and sound radiation of electrostatic speakers using circular and annular diaphragms.”, Journal of Sound and Vibration, vol.371, pp. 210-226, 2016.
[45] E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory.”, JOSA, vol. 52(10), pp. 1123-1130, 1962.
[46] J. Butters, J. Leendertz, “Speckle pattern and holographic techniques in engineering metrology.”, Optics Laser Technology, vol. 3(1), pp. 26-30, 1971.
[47] O. Lokberg, K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry.”, Journal of Physics E: Scientific Instruments, vol. 9(10) pp. 847, 1976.
[48] C. Wykes, “Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements.”, Optical Engineering, 21(3), pp. 213400, 1982.
[49] W. C. Wang, C. H. Hwang, S. Y. Lin, “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods.”, Applied optics, vol. 35(22), pp. 4502-4509. 1996.
[50] 黃吉宏,「應用電子斑點干涉術探討三維壓電材料」,國立台灣大學機械工程研究所博士論文,1998。
[51] 黃育熙,「壓電石英晶體之平板結構的動態特性研究」,國立台灣大學機械工程研究所博士論文,2013。
[52] C. C. Ma, et al., “Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminated composite plate.”, The Journal of the Acoustical Society of America, vol. 119(3), pp. 1476-1486, 2006.
[53] H. Y. Chiang, Y. H. Huang, “Experimental modeling and application of push-pull electrostatic speakers. The Journal of the Acoustical Society of America.”, vol. 146(4), pp. 2619-2631, 2019.
[54] C. Wang, “Vibration of an annular membrane attached to a free, rigid core. Journal of Sound Vibration.”, vol. 260(4), pp. 776-782, 2003.
[55] F. Pinto, “Analytical and experimental investigation on a vibrating annular membrane attached to a central free, rigid core. Journal of Sound and Vibration.”, 291(3-5), pp. 1278-1287, 2006.
[56] H. J. Kim, W. S. Yang, K. No, “Effects of an elastic mass on frequency response characteristics of an ultra-thin piezoelectric micro-acoustic actuator.”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60(8), pp. 1587-1594, 2013.
[57] 林揚中,莊沅隴,「雙層壓電圓盤複合薄膜研製近場聲學元件之耦合聲場的理論數值與實驗研究」,國立台灣科技大學機械工程實務專題報告,2016。
[58] 江信遠,「靜電和壓電揚聲器之圓形振膜振動與聲壓研究」,國立台灣科技大學機械工程研究所博士論文,2017。
[59] 陳冠宇,「薄膜複合壓電圓板開發近場聲學元件之理論解析、數值計算與實驗量測」,國立台灣科技大學機械工程系碩士學位論文,2019。
[60] 張哲睿,「壓電圓環複合薄膜於聲學元件之設計開發」,國立台灣大學機械工程研究所碩士論文,2021。
[61] 林憲楊,「應用電子斑點干涉術探討三維壓電材料體及含裂紋板的振動問題」,國立臺灣大學機械工程所博士論文,1998。
[62] R. P. Shimpi, H. G. Patel, “A two variable refined plate theory for orthotropic plate analysis.” International Journal of Sound and Vibration.”, vol. 394, pp. 545-574, 2017.
[63] 杜功焕,朱哲民,龚秀芬,声学基础 (上册). p. 3. 1981.
[64] W. M. Leach, “Introduction to electroacoustics and audio amplifier design.”, Kendall/Hunt Publishing Company Dubuque, IA, 2003.
[65] N. Atalla, M. A. Hamdi, R. Panneton, “Enhanced Weak Integral Formulation for the Mixed (u,p) Poroelastic Equations.”, J. Acoust. Soc. Am., vol. 109, pp 3065-3068, 2001.
[66] 黃御宸,「壓電薄板複合薄膜聲振研究之最佳化設計」,國立台灣大學機械工程研究所碩士論文,2022。
[67] H. Y. Chiang, Y. H. Huang, “Resonance Mode and Sound Pressure of a Push–Pull Electrostatic Speaker Based on Elliptical Diaphragm.”, Journal of Vibration and Acoustics, vol. 145, 2023.
[68] C.C. Tsai, “The method of fundamental solutions for eigenproblems in domains with and without interior holes.”, 2006.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90060-
dc.description.abstract本論文探討壓電薄板複合薄膜作為新型揚聲器的振動和聲學特性。研究方法包括理論解析、無網格特雷夫茨數值法、有限元素法和實驗量測,並進行相互對應和比較。首先對外圈固定邊界的單連通與雙連通薄膜進行振動分析,並進行張力反算;接著因壓電薄板懸吊於薄膜上形成類似自由邊界的效應,因此對壓電薄板採用自由邊界的振動理論解析;最終將壓電薄板複合薄膜形成一體結構,探討串聯型雙層壓電薄板複合跑道形薄膜元件的振動和聲學特性。
為了分析聲學元件的面外振動特性,實驗量測技術使用了全域式的電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI)和雷射都卜勒振動儀(Laser Doppler Vibrometer, LDV),並進行了人工耳(Artificial Ear)實驗以測量封閉音場的聲學特性。數種實驗量測技術也進行聲振特性的相互比較討論,且由於封閉音場也進行了有限元素法和人工耳實驗的對應,驗證有限元素模擬的有效性。
由以上研究內容掌握壓電複合薄板的聲振特性後,考慮到實驗設計製作與量測所需的時間和成本,本研究採用數值方法結合元件參數最佳化,通過調整壓電薄板和薄膜的尺寸參數,探討每個參數對振動和聲學特性的影響,將音壓頻率響應曲線最佳化,預期希望設計具有人耳感受良好聲學表現的跑道形揚聲器。故本論文結合理論解析、數值分析和實驗量測,並通過對壓電薄板複合薄膜的聲學元件,嘗試進行最佳化設計,為新型揚聲器的聲音品質和聲場增益特性,提供一可嘗試使用的設計方法。
zh_TW
dc.description.abstractThe research studied the vibration and acoustic characteristics of membranes compounded with piezoelectric thin plates as acoustic actuators. The research involves theoretical analysis, Trefftz’s meshless method, finite element method (FEM), and experimental measurements to verify with the analyzed results. Vibration analysis is conducted for single- and double-connected membranes with rim-fixed boundary conditions, and membrane tension is determined through inverse calculations. Theoretical analysis is also performed for the vibration of piezoelectric thin plates under free boundary conditions. The vibroacoustic characteristics of composite double-layered piezoelectric thin plates with racetrack diaphragm are also studied.
Out-of-plane vibration characteristics of the acoustic components are determined by using Electronic Speckle Pattern Interferometry (ESPI) and Laser Doppler Vibrometer (LDV). Acoustic measurements in enclosed sound fields are conducted using an artificial ear. The results in finite element method is validated with the results from experimental measurements obtained from the artificial ear due to the enclosed sound fields.
Avoiding time-consuming and cost involved in prototype, this study utilizes commercial finite element software combined with parameter optimization to optimize the sound pressure level, for achieving optimal design for high acoustic performance speakers. By optimizing the acoustic components of membranes compounded with piezoelectric thin plates, an effective approaching for sound quality and acoustic field of racetrack speakers with enhancement is developed in the thesis.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:14:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:14:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
致謝 II
中文摘要 1
ABSTRACT 2
目錄 3
圖目錄 7
表目錄 10
第一章 緒論 11
1.1 研究動機 11
1.2 文獻回顧 12
1.3 論文內容簡介 20
第二章 實驗原理與架設 23
2.1 雷射都卜勒測振儀 23
2.2 電子斑點干涉術 26
2.3 人工耳量測 34
2.4 聲學元件設計與製作流程 36
2.4.1 聲學元件製作方式 36
2.4.2 聲學元件的設計 40
第三章 基本理論與方法 45
3.1 壓電薄板理論 45
3.1.1 力學假設 47
3.1.2 電學假設 48
3.1.3 壓電薄板統御方程式 49
3.2 無網格法 50
3.2.1 基本解法 52
3.2.2 特雷夫茨法(Trefftz Method) 53
3.2.3 基本解法與特雷夫茨法比較 55
第四章 薄膜振動特性分析 57
4.1 薄膜統御方程式 57
4.2 矩形薄膜之自由振動分析 57
4.2.1 矩形薄膜之自由振動理論解析 58
4.2.2 矩形薄膜之自由振動特雷夫茨法 59
4.2.3 矩形薄膜之自由振動有限元素法 60
4.2.4 試片規格 62
4.2.5 矩形薄膜之理論解析與數值分析之比較 62
4.3 環形薄膜之自由振動分析 65
4.3.1 環形薄膜之自由振動理論解析 65
4.3.2 環形薄膜之自由振動特雷夫茨法 67
4.3.3 環形薄膜之自由振動有限元素法 69
4.3.4 試片規格 70
4.3.5 環形薄膜之理論解析與數值分析之比較 70
4.4 跑道形環薄膜之自由振動分析 73
4.4.1 跑道形環薄膜之自由振動特雷夫茨法 73
4.4.2 跑道形環薄膜之自由振動有限元素數值分析 76
4.4.3 試片規格 76
4.4.4 跑道形環薄膜特雷夫茨法與有限元素之比較 76
4.5 薄膜之張力分析 79
4.5.1 繃膜張力與共振頻率量測 80
4.5.2 跑道形薄膜張力之有限元素法 80
4.5.3 試片規格 81
4.5.4 跑道形薄膜張力與第一共振頻之相關性比較 81
第五章 壓電矩形薄板振動特性分析 84
5.1 自由邊界下之疊加法 84
5.2 串聯型雙層壓電矩形板面外振動理論與數值分析之比較 85
5.2.1 試片規格 86
5.2.2 有限元素數值分析 86
5.2.3 壓電矩形板於自由邊界面外振動理論解析與數值分析之比較 87
第六章 串聯型雙層壓電矩形薄板複合薄膜振動分析 90
6.1 壓電薄板複合薄膜剛體假設下之振動分析 90
6.1.1 壓電圓盤複合薄膜理論解析 91
6.1.2 壓電矩形薄板複合薄膜特雷夫茨法 91
6.1.3 壓電矩形薄板複合薄膜有限元素數值分析 94
6.1.4 試片規格 95
6.1.5 壓電薄板複合跑道形薄膜剛體假設下之振動理論解析與數值分析之比較 96
6.2 壓電薄板複合薄膜壓電薄板主導模態之振動分析 101
6.2.1 壓電薄板複合薄膜疊加法結合特雷夫茨法 101
6.2.2 壓電薄板複合薄膜有限元素數值分析 103
6.2.3 試片規格 103
6.2.4 壓電薄板複合跑道形薄膜壓電薄板主導模態振動理論解析與數值分析之比較 103
第七章 聲學元件聲學特性分析、實驗量測與最佳化 107
7.1 封閉音場之聲學特性分析 107
7.1.1 封閉音場之有限元素分析 108
7.1.2 多孔彈性波理論 110
7.1.3 封閉音場實驗量測與數值分析之比較 110
7.1.4 壓電矩形薄板複合跑道形薄膜聲學元件(B)之最佳化 111
7.1.5 最佳化壓電矩形薄板複合跑道形薄膜聲學元件(B)之聲學特性 117
第八章 結論與未來展望 119
8.1 結論 119
8.2 未來展望 121
參考文獻 123
-
dc.language.isozh_TW-
dc.subject疊加法zh_TW
dc.subject跑道形揚聲器zh_TW
dc.subject人工耳zh_TW
dc.subject聲固耦合分析zh_TW
dc.subject聲學元件zh_TW
dc.subject無網格法zh_TW
dc.subject薄膜zh_TW
dc.subject壓電平板zh_TW
dc.subject特雷夫茨法zh_TW
dc.subjectsuperposition methoden
dc.subjectracetrack speakeren
dc.subjectartificial earen
dc.subjectacoustic componenten
dc.subjectvibroacousticen
dc.subjectmeshless methoden
dc.subjectmembraneen
dc.subjectpiezoelectric plateen
dc.subjectTrefftz methoden
dc.title無網格法探討跑道形薄膜複合壓電板之聲振特性zh_TW
dc.titleVibroacoustic of Racetrack Diaphragm Compounded with Piezoelectric Plates Using Meshless Methoden
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳重德;廖展誼zh_TW
dc.contributor.oralexamcommitteeChung-De Chen;Chan-Yi Liaoen
dc.subject.keyword疊加法,特雷夫茨法,壓電平板,薄膜,無網格法,聲學元件,聲固耦合分析,人工耳,跑道形揚聲器,zh_TW
dc.subject.keywordsuperposition method,Trefftz method,piezoelectric plate,membrane,meshless method,acoustic component,vibroacoustic,artificial ear,racetrack speaker,en
dc.relation.page129-
dc.identifier.doi10.6342/NTU202303733-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf7.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved