Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90058
Title: PoliCE: 利用策略網路高效生成基於通用因果模型的反事實解
PoliCE: Policy Network for Efficient Counterfactual Explanation over General Causal Models
Authors: 張烱郁
Chiung-Yu Chang
Advisor: 葉彌妍
Mi-Yen Yeh
Co-Advisor: 林守德
Shou-De Lin
Keyword: 反事實解釋,因果模型,強化學習,深度學習,策略網路,
Counterfactual Explaination,Causal Model,Reinforcement Learning,Deep Learning,Policy Network,
Publication Year : 2023
Degree: 碩士
Abstract: 近期於「反事實解釋」(Counterfactual Explanation, CE) 研究探索了在保持變數因果關係的狀況下,改變分類器輸出的輸入的變數過程。我們進一步研究如何在必須變動內部變數以改變分類器輸出時,保留變數間的因果關係。具體而言,我們提出了一種名為 PoliCE 的基於強化學習的演算法,透過迭代生成跨越決策邊界所需要的每一步 (調整變數的動作)。PoliCE 找出每個內部變數在父變數給定時的可變動性,並將對其的變動分解為主動變動和固有因果效應。此外,它保證了對分類器的少量存取,因此在保留特徵因果關係的同時,可以非常高效。實驗結果顯示,PoliCE 在包括數值和類別變數的合成和真實數據集上,比過去的方法在多項指標中表現更好,尤其在保持變數間的因果關係及效率上提升顯著。
Recent studies of Counterfactual Explanation (CE) explore the perturbation process of input features to change a classifier’s output in awareness of the causal relations among features. We further study how to preserve the inherent feature causality when the perturbation on endogenous features is necessary to changing the classifier output. Specifically, we propose PoliCE, a reinforcement learning-based algorithm to iteratively generate every step (action of tuning features) along the way to crossing the decision boundary. PoliCE finds out the perturbability of each endogenous feature given its parent features and decomposes the perturbation on it into active action and inherent causal effect. It guarantees a small number of accesses to the classifier, thus making it very efficient while preserving the feature causality. Extensive experiment results show that PoliCE outperforms the baselines on both synthetic and real datasets with both numerical and categorical features, especially in causality preservation and efficiency.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90058
DOI: 10.6342/NTU202303272
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2028-08-07
Appears in Collections:資料科學學位學程

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Until 2028-08-07
1.43 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved