Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90025
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷zh_TW
dc.contributor.advisorChih-Ting Linen
dc.contributor.author蕭瑋誠zh_TW
dc.contributor.authorWei-Cheng Hsiaoen
dc.date.accessioned2023-09-22T17:06:12Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citationS. Dhall et al., "A review on environmental gas sensors: Materials and technologies," Sensors International, vol. 2, p. 100116, 2021.
Shimamoto C, et al., “Breath and blood ammonia in liver cirrhosis.”, Hepatogastroenterology. ,Mar-Apr;47(32):443-5, PMID: 10791209, 2000.
V. Kohlschütter and P. Haenni. Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure. Z. Anorg. Allg. Chem. 1918, 105 (1): 121–144.
P. R. Wallace, "The band theory of graphite," Physical Review, vol. 71, no. 9, p. 622, 1947.
F. A. Lindemann, Physikalische Zeitschrift 11, 609 (1910).
G. Ruess and F. Vogt, "Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd," Monatshefte Für Chemie And Verwandte Teile Anderer Wissenschaften, vol. 78, no. 3, pp. 222-242, 1948.
C. Lee et al., "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, no. 5887, pp. 385-388, 2008.
Y. Zhang et al., "Review of chemical vapor deposition of graphene and related applications," Accounts Of Chemical Research, vol. 46, no. 10, pp. 2329-2339, 2013.
K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-669, 2004.
H. Huang et al., "The chemistry and promising applications of graphene and porous graphene materials," Advanced Functional Materials, vol. 30, no. 41, p. 1909035, 2020.
G. Yang et al., "Structure of graphene and its disorders: a review," Science And Technology Of Advanced Materials, vol. 19, no. 1, pp. 613-648, 2018.
Yuli Huang et al., "Bi-layer Graphene: Structure, Properties, Preparation and Prospects," Current Graphene Science (Discontinued) , vol 2, no. 2, pp. 97-105, 2018.
Liu Z, Suenaga K, Harris PJF, Iijima S. Open and closed edges of graphene layers. Phys Rev Lett 2009; 102(1): 015501.
Liu Q, Gong Y, Wilt JS, Sakidja R, Wu J. Synchronous growth of AB-stacked bilayer graphene on cu by simply controlling hydrogen pressure in CVD process. Carbon 2015; 93: 199-206.
Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the electronic structure of bilayer graphene. Science 2006; 313(5789): 951-4.
Zhang YB, Tang TT, Girit C et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009; 459(7248): 820- 3.
Castro EV, Novoselov KS, Morozov SV, et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 2007; 99(21): 216802.
Cao Y, Fatemi V, Demir A et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018; 556(7699): 80-4.
Cao Y, Fatemi V, Fang S et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018; 556(7699): 43- 50.
Mele EJ. Condensed-matter physics novel electronic states seen in graphene. Nature 2018; 556(7699): 37-8.
Y. Seekaew et al., " Highly sensitive and selective room-temperature NO2 gas sensor based on bilayer transferred chemical vapor deposited graphene," Applied Surface Science, vol. 404, pp. 357-363, 2017.
I. Childres et al., "Raman spectroscopy of graphene and related materials," New Developments In Photon And Materials Research, vol. 1, pp. 1-20, 2013.
J.-Y. Hwang et al., "Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density," Nanotechnology, vol. 21, no. 46, p. 465705, 2010.
Zhuxing Sun, Siyuan Fang, and Yun Hang Hu, "3D Graphene Materials: From Understanding to Design and Synthesis Control," Chemical Reviews, 2020 120 (18), 10336-10453.
Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z, "Graphene-Based Supercapacitor with an Ultrahigh Energy Density. " Nano Lett. 2010, 10, 4863−4868.
Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M., "Three-Dimensional Flexible and Conductive-Interconnected Graphene Networks Grown by Chemical Vapour Deposition. ", Nat. Mater. 2011, 10, 424−428.
Li, C.; Shi, G., "Three-Dimensional Graphene Architectures.", Nanoscale 2012, 4, 5549−5563.
Zeng, W.; Tao, X.-M.; Lin, S.; Lee, C.; Shi, D.; Lam, K.-h.; Huang, B.; Wang, Q.; Zhao, Y., "Defect-Engineered Reduced Graphene Oxide Sheets with High Electric Conductivity and Controlled Thermal Conductivity for Soft and Flexible Wearable Thermoelectric Generators. ", Nano Energy 2018, 54, 163−174.
Sokolov, D. A.; Shepperd, K. R.; Orlando, T. M., "Formation of Graphene Features from Direct Laser-Induced Reduction of Graphite Oxide.", J. Phys. Chem. Lett. 2010, 1, 2633−2636.
Fu, K. et al., "Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries. ", Adv. Mater. 2016, 28, 2587− 2594.
R. Ye, D. K. James, and J. M. Tour, "Laser‐induced graphene: from discovery to translation," Advanced Materials, vol. 31, no. 1, p. 1803621, 2019.
J. Lin et al., "Laser-induced porous graphene films from commercial polymers," Nature Communications, vol. 5, no. 1, pp. 1-8, 2014.
M. R. Bobinger et al., "Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates," Carbon, vol. 144, pp. 116-126, 2019.
A. C. Ferrari et al., "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, no. 18, p. 187401, 2006.
S. Küper et al., "Threshold behavior in polyimide photoablation: Single-Shot rate measurements and surface-temperature modeling," Applied Physics A, vol. 56, no. 1, pp. 43-50, 1993.
M. G. Stanford et al., "Laser-induced graphene for flexible and embeddable gas sensors," ACS Nano, vol. 13, no. 3, pp. 3474-3482, 2019.
R. Ye, D. K. James, and J. M. Tour, "Laser-induced graphene," Accounts Of Chemical Research, vol. 51, no. 7, pp. 1609-1620, 2018.
S. S. Varghese et al., "Recent advances in graphene based gas sensors," Sensors and Actuators B: Chemical, vol. 218, pp. 160-183, 2015.
Dipankar Panda et al., " Selective detection of carbon monoxide (CO) gas by reduced graphene oxide (rGO) at room temperature," RSC Adv., vol. 6, pp. 47337-47348, 2016.
Shubhda Srivastava et al., " Boron-doped few-layer graphene nanosheet gas sensor for enhanced ammonia sensing at room temperature," RSC Adv., vol. 10, pp. 1007-1014, 2020.
Gautam M, Jayatissa AH., "Gas sensing properties of graphene synthesized by chemical vapor deposition. ", Mater Sci Eng: C., vol.31, issue 7, pp.1405-1411, 2011.
Hoang Si Hong et al., " Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures," Applied Surface Science., vol. 492, pp. 449-454, 2019.
Haiyinag Wu et al., " A Gas Sensing Channel Composited with Pristine and Oxygen Plasma-Treated Graphene," Sensors, 19(3), 625, 2019.
Dezhi Wu et al., " A Simple Graphene NH3 Gas Sensor via Laser Direct Writing," Sensors, 18(12), 4405, 2018.
H. Xu, L. Ma, and Z. Jin, "Nitrogen-doped graphene: Synthesis, characterizations and energy applications," Journal Of Energy Chemistry, vol. 27, no. 1, pp. 146-160, 2018.
A. Sinitskii et al., "Kinetics of diazonium functionalization of chemically converted graphene nanoribbons," ACS Nano, vol. 4, no. 4, pp. 1949-1954, 2010.
A. Felten et al., " Controlled modification of mono-and bilayer graphene in O2, H2 and CF4 plasmas," Nanotechnology, vol. 24, no. 35, p. 355705, 2013.
Hui Zhang et al., " Spectroscopic Investigation of Plasma-Fluorinated Monolayer Graphene and Application for Gas Sensing," ACS Appl. Mater. Interfaces, vol.8, no. 13, pp. 8652–8661, 2016.
C.-H. Huang et al., "Ultra-low-damage radical treatment for the highly controllable oxidation of large scale graphene sheets," Carbon, vol. 73, pp. 244-251, 2014.
林駿璿, "低損傷電漿改質的功能化石墨烯之特性及應用," 2019,台大電子所博論.
Mirzaei, A. et al., "N-Doped Graphene and Its Derivatives as Resistive Gas Sensors: An Overview." Chemosensors, 11, no.6, 334, 2023.
Y. Shao et al., "Nitrogen-doped graphene and its electrochemical applications," Journal Of Materials Chemistry, vol. 20, no. 35, pp. 7491-7496, 2010.
F. M. Vivaldi et al., "Three-dimensional (3D) laser-induced graphene: structure, properties, and application to chemical sensing," ACS Applied Materials & Interfaces, vol. 13, no. 26, pp. 30245-30260, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90025-
dc.description.abstract氣體感測器在我們的生活中扮演非常重要的角色,在無色無味的氣體環境下,人們無法依靠本身的視覺以及嗅覺去了解環境的狀況,透過氣體感測器,人們能了解環境中的危害,並進一步逃離,避免悲劇的產生。根據氣體濃度資料所示,室內二氧化碳濃度在達到1000 ppm以上時,會影響人類的呼吸;一氧化碳則是在數百ppm時,會使人體昏迷,2000 ppm以上甚至可能致死;氨氣則是在20至25 ppm時,就會刺激我們的皮膚、眼睛、呼吸系統等等;而在醫學方面,有些研究指出有肝疾病的患者呼出的氨氣濃度會超過0.7 ppm,而普通人呼出的氨氣濃度在 0.3 ppm以下,而在食品保存方面,食物腐壞也會產生二氧化硫、氨氣等氣體;因此若是能研發及改良氣體感測器,並在實際氣體感測應用得到驗證的話,將有助於提升感測器對於氣體的靈敏度與選擇性;其中,以石墨稀優越的物理特性、良好的電子傳輸速度、高質量晶體以及低電阻的特性等,已經被廣泛應用在各個領域上,其中也包含氣體感測器。
本研究主要是以碳材料為主的不同氣體感測器,透過不同時間的氮改質,分析及比較改質前後對於二氧化碳、氨氣以及一氧化碳的反應程度,進一步整理並歸納出感測器元件適用的氣體種類以及濃度,以及進一步改良的展望。
碳材料為主的氣體感測器,分為單層石墨烯、雙層石墨烯以及雷射誘導石墨烯(LIG);其中單層石墨烯,是以化學氣相沉積法(CVD)來製備,首先將銅箔拋光並放入高溫爐管內,通入氬氣、氫氣及甲烷,將碳原子沉積在銅箔上來成長出單層石墨烯,之後轉印在基板上;而雙層石墨烯則是轉印至單層石墨烯的銅箔上後,再轉印至基板上;將製備好的感測器元件進行低損傷電漿(LD-plasma)系統進行氮改質,其中低損傷電漿系統中利用互補式遮板的架設,阻擋了大部份的離子撞擊與紫外光幅射,因此大幅地減少對於石墨烯的表面傷害,且透過調整加熱溫度並配合拉曼光譜儀的分析,選擇最合適的溫度去穩定控制氮改質石墨稀的程度;最後再經由改變氮改質的時間去觀察拉曼波形圖的G peak和 D peak的峰值比例,初步判斷其改質的狀況與成功與否,並找出哪一個改質時間下的氣體感測元件有最好的感測能力。
接下來再以雷射誘導石墨烯(LIG)元件進行電阻對溫度的變化測試,討論在定區間的溫度下,溫度與電阻的線性關係,並使用與單層石墨烯、雙層石墨烯相同的改質條件進行低損傷電漿系統氮改質,判斷在不同的氮改質時間下,所得到的拉曼光譜圖作分析及討論。
最後,將改質後的單層、雙層石墨烯以及LIG分別進行不同濃度的二氧化碳、氨氣和一氧化碳的量測,其中二氧化碳的濃度為1000 ppm至5000 ppm的區間;氨氣以及一氧化碳濃度則是0 ppm 至 10 ppm以及100 ppm去作電性量測,比較三種感測器對於不同氣體和濃度的反應。
zh_TW
dc.description.abstractGas sensors play a crucial role in our lives. In environments where gases are colorless and odorless, relying on our own vision and sense of smell is insufficient to understand the conditions. Through gas sensors, people can assess the hazards in the environment and take necessary actions to avoid tragedies. Based on the data on gas concentrations, when indoor carbon dioxide (CO2) levels exceed 1000 ppm, it affects human respiration. Carbon monoxide (CO), even at a few hundred ppm, can cause unconsciousness, and concentrations above 2000 ppm may even be lethal. Ammonia (NH3) at 20 to 25 ppm can irritate our skin, eyes, and respiratory system. In the field of medicine, some studies indicate that patients with liver diseases exhale ammonia concentrations exceeding 0.7 ppm, while the exhaled ammonia concentration in healthy individuals is below 0.3 ppm. In terms of food preservation, the spoilage of food can produce gases such as sulfur dioxide (SO2) and ammonia. Therefore, the development and improvement of gas sensors, validated through practical gas sensing applications, would enhance the sensitivity and selectivity of the sensors towards gases. Graphene, with its superior physical properties, excellent electron transport speed, high-quality crystals, and low resistance, has been widely applied in various fields, including gas sensors.
This study primarily focuses on carbon-based gas sensors, including monolayer graphene, bilayer graphene, and laser-induced graphene (LIG).
Monolayer graphene is prepared through chemical vapor deposition (CVD) by polishing copper foil, placing it in a high-temperature furnace, and introducing argon gas, hydrogen gas, and methane. Carbon atoms are deposited on the copper foil to grow monolayer graphene, which is then transferred onto a substrate. Bilayer graphene is transferred onto the copper foil of monolayer graphene and subsequently onto the substrate. The prepared sensor devices undergo nitrogen modification using a low-damage plasma (LD-plasma) system. In the LD-plasma system, complementary shielding plates are used to block most of the ion collisions and ultraviolet radiation, significantly reducing surface damage to graphene. By adjusting the heating temperature and analyzing the Raman spectra with a Raman spectrometer, the most suitable temperature for stabilizing and controlling the nitrogen-modified graphene is selected. Subsequently, by varying the nitrogen modification time and observing the peak ratio of the G peak and D peak in the Raman spectra, the modification status and success of the gas sensing elements are preliminarily determined, identifying the gas sensing devices with the best sensing ability at different modification times.
Next, the LIG devices are tested for the resistance-temperature variation to discuss the linear relationship between temperature and resistance within a specific temperature range. The same modification conditions as monolayer graphene and bilayer graphene are applied using the low-damage plasma system to nitrogen-modify the LIG. Raman spectroscopy is used to analyze and discuss the obtained Raman spectra under different nitrogen modification times.
Finally, the modified monolayer graphene, bilayer graphene, and LIG are subjected to measurements of different concentrations of carbon dioxide, ammonia, and carbon monoxide. The carbon dioxide concentration ranges from 1000 ppm to 5000 ppm, while ammonia and carbon monoxide concentrations range from 0 ppm to 10 ppm and 100 ppm, respectively. A comparison is made among the three types of sensors regarding their responses to different gases and concentrations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:06:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:06:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
目錄 viii
圖目錄 x
LIST OF TABLES xiv
Chapter 1 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 3
Chapter 2 文獻回顧及石墨烯介紹 4
2.1 石墨烯簡介 4
2.2 石墨烯材料特性分析 5
2.3 雙層石墨烯簡介 6
2.4 石墨烯之拉曼分析 8
2.5 雷射誘導石墨烯(LIG)簡介 10
2.6 LIG材料分析 11
2.7 石墨烯於氣體感測簡介 16
Chapter 3 低損傷電漿改質石墨烯與元件製備 22
3.1 低損傷電漿改質石墨烯簡介 22
3.2 單雙層石墨烯生長與製備 26
3.3 氮改質石墨烯分析與比較 35
3.4 LIG元件製備 45
3.5 LIG氮改質前後分析與比較 49
Chapter 4 氣體量測實驗及結果分析 53
4.1 氣體量測流程與分析方法 53
4.2 氮改質單層石墨烯氣體感測 59
4.3 氮改質雙層石墨烯氣體感測 63
4.4 氮改質LIG氣體感測與總結 67
Chapter 5 結論與未來展望 75
REFERENCE 78
-
dc.language.isozh_TW-
dc.subject石墨烯zh_TW
dc.subject低損傷電漿zh_TW
dc.subjectLIGzh_TW
dc.subject氮改質zh_TW
dc.subject氣體感測zh_TW
dc.subjectLIGen
dc.subjectLow damage plasmaen
dc.subjectNitrogen modificationen
dc.subjectGrapheneen
dc.subjectGas sensing deviceen
dc.title氮改質多層石墨烯於氣體感測之應用zh_TW
dc.titleNitrogen Modification with Multilayer Graphene for Gas Sensing Applicationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張子璿;黃啓賢zh_TW
dc.contributor.oralexamcommitteeTzu-Hsuan Chang;Chi-Hsien Huangen
dc.subject.keyword石墨烯,LIG,低損傷電漿,氮改質,氣體感測,zh_TW
dc.subject.keywordGraphene,LIG,Low damage plasma,Nitrogen modification,Gas sensing device,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202303383-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf6.96 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved