Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89898
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉建豪zh_TW
dc.contributor.advisorChien-Hao Liuen
dc.contributor.author呂忠峻zh_TW
dc.contributor.authorChung-Chun Luen
dc.date.accessioned2023-09-22T16:35:41Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation[1] C. Downs and T. Vandervelde, “Progress in infrared photodetectors since 2000,” Sensors (Basel, Switzerland), vol. 13, pp. 5054–5098, Apr. 2013.
[2] S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through the integration of Sn alloying and external strain,” J. Appl. Phys., vol. 113, no. 7, p. 073707, Feb. 2013.
[3] T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang, and D. Zhang, “A survey on green 6G network: Architecture and technologies,” IEEE Access, vol. 7, pp. 175758–175768, 2019.
[4] A. Pavelchek, R. G. Trissel, J. Plante, and S. Umbrasas, “Long-wave infrared (10-μm) free-space optical communication system,” presented at the Optical Science and Technology, SPIE’s 48th Annual Meeting, San Diego, California, USA, p. 247, Jan. 2004.
[5] W. Hitschfeld and J. S. Marshall, “Effect of attenuation on the choice of wavelength for weather detection by radar,” Proceedings of the IRE, vol. 42, no. 7, pp. 1165–1168, Jul. 1954.
[6] Q. Chen, S. Wu, L. Zhang, H. Zhou, W. Fan, and C. S. Tan, “Transferable single-layer GeSn nanomembrane resonant-cavity-enhanced photodetectors for 2 μm band optical communication and multi-spectral short-wave infrared sensing,” Nanoscale, vol. 14, no. 19, pp. 7341–7349, 2022.
[7] Z. Xia et al., “Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities,” Science Advances, vol. 3, no. 7, p. e1602783, Jul. 2017.
[8] J. Chen et al., “Laser-induced controllable crystallization of organic-inorganic hybrid perovskites assisted by gold nanoislands,” Opt. Mater. Express, OME, vol. 13, no. 2, pp. 538–552, Feb. 2023.
[9] Z. Yang et al., “High-Performance single-crystalline perovskite thin-film photodetector,” Adv. Mater., vol. 30, no. 8, p.1704333, 2018.
[10] M. Furchi et al., “Microcavity-integrated graphene photodetector,” Nano Lett., vol. 12, no. 6, pp. 2773–2777, Jun. 2012.
[11] J. D. Kraus, “Heinrich Hertz-theorist and experimenter,” IEEE Trans. Microwave Theory Techn., vol. 36, no. 5, pp. 824–829, May 1988.
[12] W. Bernreuther and M. Suzuki, “The electric dipole moment of the electron,” Rev. Mod. Phys., vol. 63, no. 2, pp. 313–340, Apr. 1991.
[13] B. C. Regan, E. D. Commins, C. J. Schmidt, and D. DeMille, “New limit on the electron electric dipole moment,” Phys. Rev. Lett., vol.88, no.7, p.071805, Feb. 2002.
[14] C. A. Baker et al., “Improved experimental limit on the electric dipole moment of the neutron,” Phys. Rev. Lett., vol. 97, no. 13, p. 131801, Sep. 2006.
[15] P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B, vol. 80, p. 153409, Oct. 2009.
[16] J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun., vol. 8, no. 1, p. 1660, Nov. 2017.
[17] somaye jalaei, javad karamdel, and H. Ghalami Bavil Olyaee, “Black phosphorus mid infrared photodetector with circular Au/Pd antennas,” JOPN, vol. 7, no. 1, Jan. 2022.
[18] S. Moshfeghifar, K. Abbasian, M. M. Gilarlue, and M. A. T. G. Jahani, “Designing an optical filter based on subwavelength grating slot waveguide embedded with phase-change material,” Frequenz, vol. 76, no. 7–8, pp. 471–477, Aug. 2022.
[19] B. Zhang et al., “Dynamically control selective photo response in the visible light using phase change material,” Optics & Laser Technology, vol. 149, p.107916, May 2022.
[20] R. Parthasarathy, A. Bykhovski, B. Gelmont, T. Globus, N. Swami, and D. Woolard, “Enhanced coupling of subterahertz radiation with semiconductor periodic slot arrays,” Phys. Rev. Lett., vol. 98, no. 15, p. 153906, Apr. 2007.
[21] R. Kumar, R. Singh, D. Hui, L. Feo, and F. Fraternali, “Graphene as biomedical sensing element: State of art review and potential engineering applications,” Compos. B. Eng., vol. 134, pp. 193–206, Feb. 2018.
[22] T. Kumagai, N. To, A. Balčytis, G. Seniutinas, S. Juodkazis, and Y. Nishijima, “Kirchhoff’s thermal radiation from lithography-freeblack metals,” Micromachines, vol. 11, no. 9, p. 824, Aug. 2020.
[23] A. Ghobadi, T. G. Ulusoy Ghobadi, and E. Ozbay, “Lithography-free metamaterial absorbers: opinion,” Opt. Mater. Express, vol. 12, no. 2, p. 524, Feb. 2022.
[24] H. Song et al., “Nanocavity absorption enhancement for two-dimensional material monolayer systems,” Opt. Express, vol. 23, no. 6, p. 7120, Mar. 2015.
[25] M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater., vol. 12, no. 1, pp. 20–24, Jan. 2013.
[26] J. Zhu, S. Yan, N. Feng, L. Ye, J.-Y. Ou, and Q. H. Liu, “Near unity ultraviolet absorption in graphene without patterning,” Appl. Phys. Lett., vol. 112, no. 15, p. 153106, Apr. 2018.
[27] J. Park et al., “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics, vol. 1, pp. 812–821, Sep. 2014.
[28] H. Zheng et al., “Optical properties of Al-doped ZnO films in the infrared region and their absorption applications,” Nanoscale Res. Lett., vol. 13, no. 1, p. 149, May 2018.
[29] J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep., vol. 7, no. 1, p. 6740, Jul. 2017.
[30] D. Schebarchov, B. Auguié, and E. C. Le Ru, “Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells,” Phys. Chem. Chem. Phys., vol. 15, no. 12, p. 4233, 2013.
[31] K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater., vol. 26, no. 36, pp. 6324–6328, 2014.
[32] J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics, vol. 1, no. 4, pp. 347–353, Apr. 2014.
[33] M. A. Kats et al., “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett., vol. 101, no. 22, p. 221101, Nov. 2012.
[34] M. Götz, N. Osterthun, K. Gehrke, M. Vehse, and C. Agert, “Ultrathin nano-absorbers in photovoltaics: Prospects and innovative applications,” Coatings, vol. 10, no. 3, p. 218, Feb. 2020.
[35] F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, “A review of gap-surface plasmon metasurfaces: fundamentals and applications,” Nanophotonics, vol. 7, no. 6, pp. 1129–1156, Jun. 2018.
[36] R. Ma, D. Wu, Y. Liu, H. Ye, and D. Sutherland, “Copper plasmonic metamaterial glazing for directional thermal energy management,” Mater. Des., vol. 188, p. 108407, Mar. 2020.
[37] C.-Y. Chang et al., “Flexible localized surface plasmon resonance sensor with metal–insulator–metal nanodisks on PDMS Substrate,” Sci. Rep., vol. 8, no. 1, p. 11812, Aug. 2018.
[38] T. Yezekyan, V. A. Zenin, M. Thomaschewski, R. Malureanu, and S. I. Bozhevolnyi, “Germanium metasurface assisted broadband detectors,” Nanophotonics, vol. 12, no. 12, pp. 2171–2177, Jun. 2023.
[39] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett., vol. 10, no. 7, pp. 2342–2348, Jul. 2010.
[40] H. Park, J. Park, J. Y. Kwak, G. Hwang, D. Jeong, and K. Lee, “Open novel nano‑plasmonic sensing platform based on vertical conductive bridge,” Sci. Rep., pp. 265–323, Jun. 202.
[41] V. Caligiuri, M. Palei, M. Imran, L. Manna, and R. Krahne, “Planar double-epsilon-near-zero cavities for spontaneous emission and Purcell effect enhancement,” ACS Photonics, vol. 5, no. 6, pp. 2287–2294, Jun. 2018.
[42] P. Ma et al., “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size,” ACS Photonics, vol. 6, no. 1, pp. 154–161, Jan. 2019.
[43] J. Jeon et al., “Quasi-three-dimensional nanopost array integrated Type-II superlattice photodetectors for infrared multispectral filtering,” Materials Today Nano, vol. 18, p. 100221, Jun. 2022.
[44] C. Liu, X. Zuo, S. Xu, L. Wang, and D. Xiong, “Stacked dual-band quantum well infrared photodetector based on double-layer gold disk enhanced local light field,” Nanomaterials, vol. 11, no. 10, p. 2695, Oct. 2021.
[45] P. Berini, “Surface plasmon photodetectors and their applications: Surface plasmon detectors,” Laser Photonics Rev., vol. 8, no. 2, pp. 197–220, Mar. 2014.
[46] E. F. Schubert, Y. ‐H. Wang, A. Y. Cho, L. ‐W. Tu, and G. J. Zydzik, “Resonant cavity light‐emitting diode,” Appl. Phys. Lett., vol. 60, no. 8, pp. 921–923, Feb. 1992.
[47] M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys., vol. 78, no. 2, pp. 607–639, Jul. 1995.
[48] T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE Trans. Microwave Theory Tech., vol. 30, no. 10, pp. 1612–1621, Oct. 1982.
[49] M. Kats et al., “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett., vol. 103, p. 1104, Sep. 2013.
[50] W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Sel. Top. Quant. Electron., vol. 40, no. 10, pp. 1511–1518, Oct. 2004.
[51] H. Song et al., “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater., vol. 26, no. 17, pp. 2737–2743, 2014.
[52] A. Thakur et al., “Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor,” Biosens. Bioelectron., vol. 94, pp. 400–407, Aug. 2017.
[53] L. Shi, W. Zhou, Z. Li, S. Koul, A. Kushima, and Y. Yang, “Periodically ordered nanoporous perovskite photoelectrode for efficient photoelectrochemical water splitting,” Adv. Mater., vol. 12, no. 6, pp. 6335–6342, Jun. 2018.
[54] B. Wang, S. Singh, H. Lu, and C. Guo, “Design of aluminum bowtie nanoantenna array with geometrical control to tune LSPR from UV to near-IR for optical sensing,” Plasmonics, vol. 15, Jun. 2020.
[55] A. Taghipour and H. Heidarzadeh, “Design and analysis of highly sensitive LSPR-based metal–insulator–metal nano-discs as a biosensor for fast detection of SARS-CoV-2,” Photonics, vol. 9, no. 8, Art. no. 8, Aug. 2022.
[56] S. Adachi, Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors. Chichester, U.K: Wiley, 2009.
[57] C. Kittel, Introduction to solid state physics, 8th ed. Hoboken, NJ: Wiley, 2005.
[58] R. Paiella and M. Lagally, “Optical properties of tensilely strained ge nanomembranes,” Nanomaterials, vol. 8, no. 6, p. 407, Jun. 2018.
[59] H. Tran et al., “Si-Based GeSn Photodetectors toward mid-infrared imaging applications,” ACS Photonics, vol. 6, no. 11, pp. 2807–2815, Nov. 2019.
[60] B. R. Conley, H. Naseem, G. Sun, P. Sharps, and S.-Q. Yu, “High efficiency MJ solar cells and TPV using SiGeSn materials,” in 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, pp. 001189–001192, Jun. 2012.
[61] A. Zaoui, M. Ferhat, M. Certier, B. Khelifa, and H. Aourag, “Optical properties of SiSn and GeSn,” Infrared Physics & Technology, vol. 37, no. 4, pp. 483–488, Jun. 1996.
[62] R. Chen et al., “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: Enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano. Lett., vol. 14, no. 1, pp. 37–43, Jan. 2014.
[63] M. R. M. Atalla, Y. Kim, S. Assali, D. Burt, D. Nam, and O. Moutanabbir, “Extended-SWIR geSn leds with reduced footprint and efficient operation power,” ACS Photonics, vol. 10, no. 5, pp. 1649–1653, May 2023.
[64] S. Ghosh et al., “Metal-semiconductor-metal geSn photodetectors on silicon for short-wave infrared applications,” Micromachines, vol.11, no.9, p.795, Aug. 2020.
[65] J. Zheng et al., “Recent progress in GeSn growth and GeSn-based photonic devices,” J. Semicond., vol. 39, no. 6, p. 061006, Jun. 2018.
[66] H. Zhou et al., “Surface plasmon enhanced GeSn photodetectors operating at 2 µm,” Opt. Express, vol. 29, no. 6, p. 8498, Mar. 2021.
[67] S. Zaima, O. Nakatsuka, N. Taoka, M. Kurosawa, W. Takeuchi, and M. Sakashita, “Growth and applications of GeSn-related group-IV semiconductor materials,” Sci. Tech. Adv. Mater., vol. 16, no. 4, p. 043502, Jul. 2015.
[68] K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge 1-x Sn x alloys,” J. Appl. Phys., vol. 112, no. 10, p. 103715, Nov. 2012.
[69] K. Zelazna, M. Wełna, J. Misiewicz, J. Dekoster, and R. Kudrawiec, “Temperature dependence of energy gap of Ge 1− x Sn x alloys with x < 0.11 studied by photoreflectance,” J. Phys. D: Appl. Phys., vol. 49, no. 23, p. 235301, Jun. 2016.
[70] M. I. Abedin, A. Islam, and Q. Delwar Hossain, “A self-adjusting Lin-Log active pixel for wide dynamic range CMOS image sensor,” in 2015 IEEE International Conference on Telecommunications and Photonics (ICTP), Dhaka, Bangladesh, , pp. 1–4, Dec. 2015.
[71] D.-K. Seo and R. Hoffmann, “Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials,” Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), vol. 102, no. 1–6, pp. 23–32, Jun. 1999.
[72] N. Li et al., “Dark currents of GaAs/AlGaAs quantum-well infrared photodetectors,” Appl. Phys. A, vol. 89, no. 3, pp. 701–705, Sep. 2007.
[73] V. Donchev, J. C. Bourgoin, and P. Bois, “Dark current through GaAs/AlGaAs multiple quantum wells,” Semicond. Sci. Technol., vol. 17, no. 6, pp. 621–624, Jun. 2002.
[74] E. M. Gallo et al., “Picosecond response times in GaAs/AlGaAs core/shell nanowire-based photodetectors,” Appl. Phys. Lett., vol. 98, no. 24, p. 241113, Jun. 2011.
[75] S. S. Li and Y.-K. Su, Eds., Intersubband transitions in quantum wells: Physics and Devices. Boston, MA: Springer US, 1998.
[76] J.-Y. Wu, “Membrane transfer technique for gesn thin film and its optical application,” Master, Graduate Institute of Electronics Engineering, National Taiwan University, 2022.
[77] R. L. Olmon et al., “Optical dielectric function of gold,” Phys. Rev. B, vol. 86, no. 23, p. 235147, Dec. 2012.
[78] R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, “Pulsed laser deposited alumina thin films,” Ceram. Int., vol. 42, no. 1, pp. 1177–1182, Jan. 2016.
[79] W. Huang, B. Cheng, C. Xue, and C. Li, “Comparative studies of clustering effect, electronic and optical properties for GePb and GeSn alloys with low Pb and Sn concentration,” Physica B: Condensed Matter, vol. 443, pp. 43–48, Jun. 2014.
[80] M. Sahnoun et al., “First-principles calculations of optical properties of GeC, SnC and GeSn under hydrostatic pressure,” Physica B: Condensed Matter, vol. 355, no. 1–4, pp. 392–400, Jan. 2005.
[81] V. Richard D’Costa, W. Wang, Q. Zhou, E. Soon Tok, and Y.-C. Yeo, “Above-bandgap optical properties of biaxially strained GeSn alloys grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 104, no. 2, p. 022111, Jan. 2014.
[82] D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Sci. Rep., vol. 6, no. 1, p. 18922, Jan. 2016.
[83] Y.-C. Kao et al., “Performance comparison of III–V//Si and III–V//InGaAs multi-junction solar cells fabricated by the combination of mechanical stacking and wire bonding,” Sci. Rep., vol. 9, no. 1, p. 4308, Mar. 2019.
[84] H. H. Tseng et al., “Mid-infrared electroluminescence from a Ge/Ge 0.922 Sn 0.078 /Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett., vol. 102, no. 18, p. 182106, May 2013.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89898-
dc.description.abstract近年來,紅外光元件所研究的領域不論在民生、醫用、軍事或者通訊都有佔有著相當大的比重,隨著科技進步通訊世代不斷提升,為了得到更高效的訊息傳遞速度所有研究人員都積極往紅外光,甚至是中遠紅外光發展。在本篇我們探討光感測器在近紅外光之應用,所採用的材料為四族薄膜半導體材料-鍺錫合金,結合天線結構增強本身感測器之增強效果。
大多數中遠紅外光應用之材料多為使用III-V族和II-VI族材料所製成,在此篇論文我們所使用的材料為鍺錫合金,一種可從間接能隙調變至直接能隙的新型IV族材料,基於此優點可以讓工作頻段隨著施加不同應變及摻雜不同濃度之錫而改變,實現中遠紅外之通訊應用。在增強結構上則是選用了半波偶極子天線,由於此天線簡單的結構以及良好的性能,不論是無線通訊、電視及廣播、射頻辨識都可以見到其身影,本篇則利用此優點再加入本身結構設計,將奈米共振腔結構配合表面電漿子共振之效果增強,達到高度電場集中之效果。
本文所提出的天線輔助式紅外光感測器在模擬之結果中顯現出其增強效果,電場之增強可以使檢測器對於檢測光源的靈敏度提升,能夠更快速的檢測出光的變化,期望藉由實際製程做出不同的設計,並透過儀器測量比對模擬之結果,進而研發出一款能產生更高性能之光感測器。
zh_TW
dc.description.abstractIn recent years, infrared light devices have gained significant importance in various areas including consumer electronics, medical applications, military, and communications. With advancing technology and the constant demand for higher efficiency in information transmission, researchers have been actively exploring the use of infrared light and even mid to far infrared light. In this paper, we investigate the application of optical sensors in the near-infrared range, utilizing a four-group thin film semiconductor material - germanium-tin alloy, combined with an antenna structure to enhance the sensor's performance.
Most materials used in mid to far infrared applications are typically from the III-V and II-VI group families. In this study, we focus on a germanium-tin alloy, a novel IV group material that can modulate from indirect to direct bandgap. This advantage allows the working frequency range to be tuned by applying different strains and doping concentrations of tin, enabling communication applications in the mid to far infrared range. For the enhancement structure, we have chosen a half-wave dipole antenna. Due to its simple structure and excellent performance, the half-wave dipole antenna is commonly used in wireless communication, television and broadcasting, and RFID systems. In this study, we leverage these advantages and incorporate them into our structural design to enhance the sensor's performance by utilizing nanoresonator cavity structures in conjunction with surface plasmon resonance for highly concentrated electric field effects.
The proposed antenna-assisted infrared sensor demonstrates enhanced performance in our simulation results. The enhancement of the electric field can improve the sensitivity of the detector to detect light sources, enabling faster detection of changes in light. By implementing various designs through actual fabrication and comparing the results with instrumental measurements, we aim to develop a light sensor with higher performance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:35:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:35:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
圖目錄 vii
表目錄 x
Chapter 1 緒論 1
1.1 前言 1
1.2 文獻回顧 5
1.2.1 偶極子天線應用 5
1.2.2 層狀結構增強吸收機制 8
Chapter 2 GeSn薄膜材料性質 13
2.1 GeSn晶體結構 13
2.2 光學特性 14
2.3 間接-直接能隙轉換特性 16
Chapter 3 理論 18
3.1 電磁波理論 18
3.1.1 馬克士威方程式 18
3.1.2 反射、吸收以及穿透率 19
3.2 半導體理論 22
3.2.1 能帶理論 22
3.2.2 光電效應 23
3.2.3 電流密度及連續方程式 24
3.3 光檢測器 26
3.3.1 檢測器參數 27
3.3.2 暗電流機制(Dark current) 29
Chapter 4 設計與模擬 31
4.1 模擬軟體簡介與設定說明 31
4.1.1 Comsol Multiphysics 31
4.1.2 邊界條件設定及參數設置 32
4.2 半波偶極子天線設計 36
4.2.1 GeSn純塊體設計 38
4.2.2 MSM結構增強表面電漿子 41
4.2.3 加入半波偶極子天線增強設計 45
Chapter 5 分析與討論 50
5.1 分析討論 50
5.2 結果比較 51
Chapter 6 未來展望 54
REFERENCE 55
-
dc.language.isozh_TW-
dc.subject半波偶極子天線zh_TW
dc.subject紅外光感測器zh_TW
dc.subject鍺錫合金zh_TW
dc.subjectHalf-wave dipole antennaen
dc.subjectGermanium-tin alloyen
dc.subjectInfrared sensoren
dc.title天線輔助之IR光感測器zh_TW
dc.titleAntenna-assisted IR photodetectoren
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張子璿;黃琴雅zh_TW
dc.contributor.oralexamcommitteeTzu-Hsuan Chang;Chin-Ya Huangen
dc.subject.keyword紅外光感測器,半波偶極子天線,鍺錫合金,zh_TW
dc.subject.keywordInfrared sensor,Half-wave dipole antenna,Germanium-tin alloy,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202303418-
dc.rights.note未授權-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
3.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved