Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89870Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 羅翊禎 | zh_TW |
| dc.contributor.advisor | Yi-Chen Lo | en |
| dc.contributor.author | 李奕慧 | zh_TW |
| dc.contributor.author | Yi-Hui Lee | en |
| dc.date.accessioned | 2023-09-22T16:28:35Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | 吳奕蓉, 探討 Pantoea spp. 對截切香瓜品質影響. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 台北, 台灣, 2021.
鄧婷云, Pantoea vagans之表面移行及生物膜生成能力對截切香瓜品質之影響. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 台北, 台灣, 2022. 歐泳峰和陳玉玲,台灣截切蔬果產業現況及未來發展。財團法人台灣食品工業發展研究所,2010. CAS. (2023). 111年CAS優良農產品產量產值統計表。 網址: https://cas.coa.gov.tw/Home/ViewDownload?oid=10574c3d-31ec-42d1-b56c-301eb3f7c1f7 Ajdić, D.; Pham, V. T. (2007). Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays. J. Bacteriol., 189 (14), 5049–5059. Armitage, J. P.; Schmitt, R. (1997). Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti--variations on a theme? Microbiol. (Reading, England), 143 ( Pt 12), 3671–3682. Baker, M. A. B.; Kojima, S.; Nord, A. L.; Partridge, J. D. (2022). Editorial: Flagellar Motors and Force Sensing in Bacteria. Front. Microbiol., 13, 833011. Barak R.; Nur I.; Okon Y. (1983). Detection of chemotaxis in Azospirillum brasilense. J. Appl. Bacteriol. 53:399–403. Baraquet, C.; Murakami, K.; Parsek, M. R.; Harwood, C. S. (2012). The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res., 40 (15), 7207–7218. Bozena C.; Klaus S. (1997). Changes in soluble sugar and activity of α-galactosidases and acid invertase during muskmelon (Cucumis melo L.) fruit development. J. Plant Physiol., Volume 151, Issue 1, Pages 41-50, ISSN 0176-1617. Brady, C.; Cleenwerck, I.; Venter, S.; Vancanneyt, M.; Swings, J.; Coutinho, T. (2008). Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst. Appl. Microbiol., 31 (6-8), 447–460. Caiazza, N. C.; Merritt, J. H.; Brothers, K. M.; O'Toole, G. A. (2007). Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol., 189 (9), 3603–3612. Chang, C. P.; Sung, I.; Huang, C. J. (2018). Pantoea dispersa causing bulb decay of onion in Taiwan. Australas. Plant Pathol., 47. 10.1007/s13313-018-0596-2. Chavarría, M.; Kleijn, R. J.; Sauer, U.; Pflüger-Grau, K.; de Lorenzo, V. (2012). Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. mBio., 3 (2), e00028-12. Conway, T.; Cohen, P. S. (2015). Commensal and pathogenic Escherichia coli metabolism in the Gut. Microbiol. Spectr., 3 (3), 10.1128/microbiolspec. MBP-0006-2014. Cunault, C.; Faille, C.; Almudena, C. D.; Benezech, T. (2019). Structure and resistance to mechanical stress and enzymatic cleaning of Pseudomonas fluorescens biofilms formed in fresh-cut ready to eat washing tanks. J. Food Eng., 262. 10.1016. Dai, N.; Cohen, S.; Portnoy, V.; Tzuri, G.; Harel-Beja, R.; Pompan-Lotan, M.; Carmi, N.; Zhang, G.; Diber, A.; Pollock, S. (2011). Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Mol. Biol., 76 (1), 1-18. Declerck, P. (2010). Biofilms: the environmental playground of Legionella pneumophila. Environ. Microbiol., 12 (3), 557-566. Deng, W. L.; Lin, Y. C.; Lin, R. H.; Wei, C. F.; Huang, Y. C.; Peng, H. L.; Huang, H. C. (2010). Effects of galU mutation on Pseudomonas syringae-plant interactions. Mol. Plant Microbe Interact., 23 (9), 1184–1196. Dobrogosz, W. J.; Hamilton, P. B. (1971). The role of cyclic AMP in chemotaxis in Escherichia coli. Biochem. Biophys. Res. Commun., 42 (2), 202–207. Domka, J.; Lee, J.; Wood, T. K. (2006). YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl. Environ. Microbiol., 72 (4), 2449–2459. Dong, Y. H.; Zhang, X. F.; An, S. W.; Xu, J. L.; Zhang, L. H. (2008). A novel two-component system BqsS-BqsR modulates quorum sensing-dependent biofilm decay in Pseudomonas aeruginosa. Commun. Integr. Biol., 1 (1), 88–96. Dutkiewicz, J.; Mackiewicz, B.; Lemieszek, M. K.; Golec, M.; Skórska, C.; Góra-Florek, A.; Milanowski, J. (2016). Pantoea agglomerans: a mysterious bacterium of evil and good. Part II--Deleterious effects: Dust-borne endotoxins and allergens--focus on grain dust, other agricultural dusts and wood dust. Ann. Agric. Environ. Med., 23 (1), 6–29. El-Khoury, N.; Bennaceur, I.; Verplaetse, E.; Aymerich, S.; Lereclus, D.; Kallassy, M.; Gohar, M. (2021). Massive integration of planktonic cells within a developing biofilm. Microorganisms, 9 (2), 298. Filiatrault, M. J.; Stodghill, P. V.; Wilson, J.; Butcher, B. G.; Chen, H.; Myers, C. R.; Cartinhour, S. W. (2013). CrcZ and CrcX regulate carbon source utilization in Pseudomonas syringae pathovar tomato strain DC3000. RNA Biol., 10 (2), 245–255. Ganusova, E. E.; Vo, L. T.; Abraham, P. E.; O'Neal Yoder, L.; Hettich, R. L.; Alexandre, G. (2021). The Azospirillum brasilense Core chemotaxis proteins CheA1 and CheA4 link chemotaxis signaling with nitrogen metabolism. mSystems, 6 (1), e01354-20. Gao, T.; Ding, M.; Yang, C. H.; Fan, H.; Chai, Y.; Li, Y. (2019). The phosphotransferase system gene ptsH plays an important role in MnSOD production, biofilm formation, swarming motility, and root colonization in Bacillus cereus 905. Res. Microbiol., 170 (2), 86–96. Gatta, R.; Wiese, A.; Iwanicki, A.; Obuchowski, M. (2022). Influence of glucose on swarming and quorum sensing of Dickeya solani. PLoS one, 17 (2), e0263124. Graham, D.; Quinn, C.; Bradley, L. (2008). Quantitative studies on the generation of aerosols of Erwinia carotovora var. atroseptica by simulated raindrop impaction on blackleg‐infected potato stems. J. Appl. Microbiol., 43. 413 - 424. Guttenplan, S. B.; Kearns, D. B. (2013). Regulation of flagellar motility during biofilm formation. FEMS Microbiol. Rev., 37 (6), 849–871. Hammer, B. K.; Bassler, B. L. (2003). Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol., 50 (1), 101–104. Harrison, B. K.; Myrbo, A.; Flood, B. E.; Bailey, J. V. (2018). Abrupt burial imparts persistent changes to the bacterial diversity of turbidite-associated sediment profiles. Geobiology, 16 (2), 190–202. He, S.; Cui, Y.; Qin, X.; Zhang, F.; Shi, C.; Paoli, G. C.; Shi, X. (2018). Influence of ethanol adaptation on Salmonella enterica serovar Enteritidis survival in acidic environments and expression of acid tolerance-related genes. Food Microbiol., 72, 193–198. Herrera, C. M.; Koutsoudis, M. D.; Wang, X.; von Bodman, S. B. (2008). Pantoea stewartii subsp. stewartii exhibits surface motility, which is a critical aspect of Stewart's wilt disease development on maize. Mol. Plant Microbe Interact., 21 (10), 1359–1370. Herrera Gutierrez C. M., (2008). Pantoea stewartii subsp stewartti requires motility for plant infection. Doctoral Dissertations. University of Connecticut, Storrs, Connecticut., AAI3300636. Irmscher, T.; Roske, Y.; Gayk, I.; Dunsing, V.; Chiantia, S.; Heinemann, U.; Barbirz, S. (2021). Pantoea stewartii WceF is a glycan biofilm-modifying enzyme with a bacteriophage tailspike-like fold. J. Biol. Chem., 296, 100286. Jin, Y.; Wu, X.; Sa, R.; Dong, H.; Xiong, Y.; He, S.; Li, C.; Geng, X. (2022). First report of Enterobacter cloacae causing stem, leaf and fruit rot on tomato in China. Plant Dis., 10.1094/PDIS-08-22-1749-PDN. Kearns D. B. (2010). A field guide to bacterial swarming motility. Nat. Rev. Microbiol., 8 (9), 634–644. Keffeler, E. C.; Iyer, V. S.; Parthasarathy, S.; Ramsey, M. M.; Gorman, M. J.; Barke, T. L.; Varahan, S.; Olson, S.; Gilmore, M. S.; Abdullahi, Z. H.; Hancock, E. N.; Hancock, L. E. (2021). Influence of the alternative sigma factor RpoN on global gene expression and carbon catabolism in Enterococcus faecalis V583. mBio, 12 (3), e00380-21. Kido, K.; Adachi, R.; Hasegawa, M.; Yano, K.; Hikichi, Y.; Takeuchi, S.; Atsuchi, T.; Takikawa, Y. (2008). Internal fruit rot of netted melon caused by Pantoea ananatis (=Erwinia ananas) in Japan. J. Gen. Plant Pathol. 74. 302-312. Kim, H. S.; Cha, E.; Kim, Y.; Jeon, Y. H.; Olson, B. H.; Byun, Y.; Park, H. D (2016). Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels. Sci. Rep., 6, 25318. Kögel-Knabner, Ingrid. (2002). The macromolecular organic composition of Plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem., 34. 139-162. 10.1016/S0038-0717 (01) 00158-4. Kragh, K. N.; Hutchison, J. B.; Melaugh, G.; Rodesney, C.; Roberts, A. E.; Irie, Y.; Jensen, P. Ø.; Diggle, S. P.; Allen, R. J.; Gordon, V.; Bjarnsholt, T. (2016). Role of multicellular aggregates in biofilm formation. mBio, 7 (2), e00237. Krzyżanowska, D. M.; Supernat, A.; Maciąg, T.; Matuszewska, M.; Jafra, S. (2019). Selection of reference genes for measuring the expression of aiiO in Ochrobactrum quorumnocens A44 using RT-qPCR. Sci. Rep., 9 (1), 13129. Kumar, G.; Park, J. H.; Kim, M. S.; Kim, D. H.; Kim, S. H. (2014). Hydrogen fermentation of different galactose–glucose compositions during various hydraulic retention times (HRTs). Int. J. Hydrog. Energy., 39. 20625-20631. Langlotz, C.; Schollmeyer, M.; Coplin, D; Nimtz, M; Geider, K. (2011). Biosynthesis of the repeating units of the exopolysaccharides amylovoran from Erwinia amylovora and stewartan from Pantoea stewartii. Physiol. Mol. Plant Pathol. 75. 163-169. 10.1016/j.pmpp.2011.04.001. Lapointe, R.; Frenette, M.; Vadeboncoeur, C. (1993). Altered expression of several genes in IIIManL-defective mutants of Streptococcus salivarius demonstrated by two-dimensional gel electrophoresis of cytoplasmic proteins. Res. Microbiol., 144 (4), 305–316. Latifi, A.; Foglino, M.; Tanaka, K.; Williams, P.; Lazdunski, A. (1996). A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol., 21 (6), 1137–1146. Liu, Y.; Pei, T.; Yi, S.; Du, J.; Zhang, X.; Deng, X.; Yao, Q.; Deng, M. R.; Zhu, H. (2021). Phylogenomic analysis substantiates the gyrB gene as a powerful molecular marker to efficiently differentiate the most closely related genera Myxococcus, Corallococcus, and Pyxidicoccus. Front. Microbiol., 12, 763359. Liu Q. Y.; Wu L. W.; Niu J. J.; Zhao X. L (2020). Research progress of the composition and function of bacterial phosphotransferase system. Microbiol. China, 47 (7): 2266-2277. Loo, C. Y.; Mitrakul, K.; Voss, I. B.; Hughes, C. V.; Ganeshkumar, N. (2003). Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. J. Bacteriol., 185 (21), 6241–6254. Long, J.; Sadoine, M.; Song, C.; Arra, Y.; Frommer, W.; Yang, B. (2021). Sucrose-dependence of sugar uptake, quorum sensing and virulence of the rice blight pathogen Xanthomonas oryzae pv. oryzae. bioRxiv, 10.1101/2021.08.22.457195. Lu, L.; Hu, W.; Tian, Z.; Yuan, D.; Yi, G.; Zhou, Y.; Cheng, Q.; Zhu, J.; Li, M. (2019). Developing natural products as potential anti-biofilm agents. Chinese Med., 14, 11. Machado, I.; Silva, L. R.; Giaouris, E. D.; Melo, L. F.; Simões, M. (2020). Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res. Int. (Ottawa, Ont.), 127, 108754. Madsen, J. S.; Burmølle, M.; Hansen, L. H.; Sørensen, S. J. (2012). The interconnection between biofilm formation and horizontal gene transfer. FEMS Microbiol. Immunol., 65 (2), 183–195. Mangwani, N.; Kumari, S.; Das, S. (2015). Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6. Appl. Microbiol. Biotechnol., 99 (23), 10283–10297. Meyer, F. M.; Jules, M.; Mehne, F. M.; Le Coq, D.; Landmann, J. J.; Görke, B.; Aymerich, S.; Stülke, J. (2011). Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway. J. Bacteriol., 193 (24), 6939–6949. Moayad, N. M.; Bnyan, I. A.; Hayam, K. A.; Kezar, M. Y. (2015). The role of some virulence factors of Streptococcus mutans bacteria isolated of patients with dental diseases in Hilla city. World J. Pharm. Res., 2277-7105. 4. 12. 357-376. Morabbi Heravi, K.; Watzlawick, H.; Altenbuchner, J. (2019). The melREDCA Operon Encodes a Utilization System for the Raffinose Family of Oligosaccharides in Bacillus subtilis. J. Bacteriol., 201(15), e00109-19. Munir, S.; Shah, A.; Shahid, M.; Manzoor, I.; Aslam, B.; Rasool, M.; Saeed, M.; Ayaz, S.; Khurshid, M. (2020). Quorum sensing interfering strategies and their implications in the management of biofilm-associated bacterial infections. Braz. Arch. Biol. Technol., 63. e20190555. Narberhaus, F.; Balsiger, S. (2003). Structure-function studies of Escherichia coli RpoH (sigma32) by in vitro linker insertion mutagenesis. J. Bacteriol., 185 (9), 2731–2738. Needham, B. D.; Trent, M. S. (2013). Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat. Rev. Microbiol., 11 (7), 467–481. Neumann, S.; Grosse, K.; Sourjik, V. (2012). Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 109 (30), 12159–12164. Nishijima, K.; Couey, H.M.; Alvarez, A. (1987). Internal yellowing, a bacterial disease of papaya fruits caused by Enterobacter cloacae. Plant Dis., 71. Noster, J.; Hansmeier, N.; Persicke, M.; Chao, T. C.; Kurre, R.; Popp, J.; Liss, V.; Reuter, T.; Hensel, M. (2019). Blocks in tricarboxylic acid cycle of Salmonella enterica cause global perturbation of carbon storage, motility, and host-pathogen interaction. mSphere, 4 (6), e00796-19. Nyenje, M. E.; Green, E.; Ndip, R. N. (2013). Evaluation of the effect of different growth media and temperature on the suitability of biofilm formation by Enterobacter cloacae strains isolated from food samples in South Africa. Molecules (Basel, Switzerland), 18 (8), 9582–9593. O'Neal, L.; Ryu, M. H.; Gomelsky, M.; Alexandre, G. (2017). Optogenetic manipulation of cyclic di-GMP (c-di-GMP) levels reveals the role of c-di-GMP in regulating aerotaxis receptor activity in Azospirillum brasilense. J. Bacteriol., 199 (18), e00020-17. Patel, N.; Curtis, J. C.; Plotkin, B. J. (2021). Insulin regulation of Escherichia coli abiotic biofilm formation: Effect of nutrients and growth conditions. Antibiotics (Basel, Switzerland), 10 (11), 1349. Petrova, O. E.; Sauer, K. (2016). Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr. Opin. Microbiol., 30, 67–78. Peng, S.; Liu, L.; Zhao, H.; Wang, H.; Li, H. (2018). Selection and validation of reference genes for quantitative real-time PCR normalization under ethanol stress conditions in Oenococcus oeni SD-2a. Front. Microbiol., 9, 892. Qu, J.; Chen, T.; Yao, M.; Wang, Y.; Xiao, W.; Li, B. (2020). ABC transporter and its application in synthetic biology. Shengwu Gongcheng Xuebao/Chin. J. Biotechnol., 36 (9), 1754–1766. Rawat S. (2015). Food Spoilage: Microorganisms and their prevention. Asian J. Plant Sci., 5 (4):47-56. Regassa, L. B.; Novick, R. P.; Betley, M. J. (1992). Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect. Immun., 60 (8), 3381–3388. Roper M. C. (2011). Pantoea stewartii subsp. stewartii: lessons learned from a xylem-dwelling pathogen of sweet corn. Mol. Plant Pathol., 12(7), 628–637. Rosa, E.; Batubara, U. M.; Suparjo, S. (2019). Chemotactic motility and growth of Pseudomonas fluorescens towards glucose concentration. Microbiol. Indones., 13(2), 1-1. Rouxhet P. G.; Mozes N. (1990). Physical chemistry of the interaction between attached microorganisms and their support. Water Sci. Technol., 22:1–16. Roy, P. K.; Ha, A. J.; Mizan, M. F. R.; Hossain, M. I.; Ashrafudoulla, M.; Toushik, S. H.; Nahar, S.; Kim, Y. K.; Ha, S. D. (2021). Effects of environmental conditions (temperature, pH, and glucose) on biofilm formation of Salmonella enterica serotype Kentucky and virulence gene expression. Poult. Sci., 100 (7), 101209. Rudrappa, T.; Czymmek, K. J.; Paré, P. W.; Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol., 148 (3), 1547–1556. Samman M.; Asad A. S.; Muhammad S. (2020). Quorum sensing interfering strategies and their implications in the management of biofilm-associated bacterial infections. Braz. arch. biol. technol., Vol. 63. Schneider E. (2001). ABC transporters catalyzing carbohydrate uptake. Res. Microbiol., 152 (3-4), 303–310. Shao, L.; Dong, Y.; Chen, X.; Xu, X.; Wang, H. (2020). Modeling the elimination of mature biofilms formed by Staphylococcus aureus and Salmonella spp. Using combined ultrasound and disinfectants. Ultrason. Sonochem., 69, 105269. Sharma, M.; Anand, S. K. (2002). Swarming: A coordinated bacterial activity. Curr. Sci., 83 (6), 707–715. Shrout, J. D.; Chopp, D. L.; Just, C. L.; Hentzer, M.; Givskov, M.; Parsek, M. R. (2006). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol., 62 (5), 1264–1277. Slížová, M.; Nemcová, R.; Mad'ar, M.; Hadryová, J.; Gancarčíková, S.; Popper, M.;Pistl, J. (2015). Analysis of biofilm formation by intestinal lactobacilli. Can. J. Microbiol., 61 (6), 437–446. Sourjik, V.; Wingreen, N. S. (2012). Responding to chemical gradients: bacterial chemotaxis. Curr. Opin. Cell Biol., 24 (2), 262–268. Sun, E.; Liu, S.; Hancock, R. E. W. (2018). Surfing motility: a conserved yet diverse adaptation among motile bacteria. J. Bacteriol., 200 (23), e00394-18. Tan, L.; Li, S. R.; Jiang, B.; Hu, X. M.; Li, S. (2018). Therapeutic Targeting of the Staphylococcus aureus Accessory Gene Regulator (agr) System. Front. Microbiol., 9, 55. Tan S. Y.; Yang, C. L.; Mei, X. L.; Shen, S. Y.; Raza, W.; Shen, Q. R.; Xu, Y. C. (2013). The effect of organic acids from tomato exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Appl. Soil Ecol., 64. 15–22. Tarifa, M. C.; Genovese, D.; Lozano, J. E.; Brugnoni, L. I. (2018). In situ microstructure and rheological behavior of yeast biofilms from the juice processing industries. Biofouling, 34 (1), 74–85. Taylor, B. L.; Zhulin, I. B.; Johnson, M. S. (1999). Aerotaxis and other energy-sensing behavior in bacteria. Annu. Rev. Microbiol., 53, 103–128. Tremblay, J.; Déziel, E. (2008). Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J. Basic Microbiol., 48 (6), 509–515. Trindade, M. I.; Abratt, V. R.; Reid, S. J. (2003). Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose. Appl. Environ. Microbiol., 69 (1), 24–32. Trisler, P.; Gottesman, S. (1984). lon transcriptional regulation of genes necessary for capsular polysaccharide synthesis in Escherichia coli K-12. J. Bacteriol., 160 (1), 184–191. TFDA. (2022). Food nutrient composition database: Melon; honeydew melon. Retrieved from https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178&t=4&k=%e7%b4%85%e5%af%b6%e7%9f%b3%e6%b4%8b%e9%a6%99%e7%93%9c. USDA. (2019). FoodData Central: Melon, cantaloupe, raw, (foundation, 746770), nutrient analyze data. Retrieved from https://fdc.nal.usda.gov/fdc-app.html#/food-details/746770/nutrients. Uppuluri, P.; Chaturvedi, A. K.; Srinivasan, A.; Banerjee, M.; Ramasubramaniam, A. K.; Köhler, J. R.; Kadosh, D.; Lopez-Ribot, J. L. (2010). Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathogens, 6 (3), e1000828. Vankova A.A.; Drenova N.V.; Sviridova L.A.; Golovkin G.A. (2021). Endophytic microorganisms of apple fruit (Malus domestica). BIO Web Conferences. 39 07004. Verstraeten, N.; Braeken, K.; Debkumari, B.; Fauvart, M.; Fransaer, J.; Vermant, J.; Michiels, J. (2008). Living on a surface: swarming and biofilm formation. Trends Microbiol., 16 (10), 496–506. Waldrop, R.; McLaren, A.; Calara, F.; McLemore, R. (2014). Biofilm growth has a threshold response to glucose in vitro. Clin. Orthop. Relat. Res., 472 (11), 3305–3310. Walterson, A. M.; Stavrinides, J. (2015). Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev., 39 (6), 968–984. Wasendorf, C. (2022). Growing plants and minds: Examining soft rot causing bacteria and students' understanding of genetic concepts. ProQuest Dissertations & Theses Global. (2681888730). Whiteley, M.; Bangera, M. G.; Bumgarner, R. E.; Parsek, M. R.; Teitzel, G. M.; Lory, S.; Greenberg, E. P. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413 (6858), 860–864. Williamson, K. S.; Dlakić, M.; Akiyama, T.; Franklin, M. J. (2023). The Pseudomonas aeruginosa RpoH (σ32) Regulon and its role in essential cellular functions, starvation survival, and antibiotic tolerance. Int. J. Mol. Sci., 24 (2), 1513. Xu, T.; Yu, M.; Liu, J.; Lin, H.; Liang, J.; Zhang, X. H. (2019). Role of RpoN from Labrenzia aggregata LZB033 (Rhodobacteraceae) in formation of flagella and biofilms, motility, and environmental adaptation. Appl. Environ. Microbiol., 85 (7), e02844-18. Yan, Z.; Wang, S.; Ma, D.; Liu, B.; Lin, H.; Li, S. (2019). Meteorological Factors Affecting Pan Evaporation in the Haihe River Basin and China. Water. 11. Yang, A.; Tang, W. S.; Si, T.; Tang, J. X. (2017). Influence of physical effects on the swarming motility of Pseudomonas aeruginosa. Biophys. J., 112 (7), 1462–1471. Yang Y.; Liu Y.; Zhou M. X.; Zhu G. Q. (2018). Both quorum sensing (Qs)–I and II systems regulate Escherichia coli flagellin expression. Pakistan J. Zool., Vol. 50, Iss. 5, pp 1807-1813 Yeung, A. T.; Torfs, E. C.; Jamshidi, F.; Bains, M.; Wiegand, I.; Hancock, R. E.; Overhage, J. (2009). Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J. Bacteriol., 191 (18), 5592–5602. Yin, W.; Wang, Y.; Liu, L.; He, J. (2019). Biofilms: The microbial "protective clothing" in extreme environments. Int. J. Mol. Sci., 20 (14), 3423. Yousaf, S.; Afzal, M.; Reichenauer, T. G.; Brady, C. L.; Sessitsch, A. (2011). Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ. Pollut. (Barking, Essex : 1987), 159 (10), 2675–2683. Yu, X.; Jiang, J.; Liang, C.; Zhang, X.; Wang, J.; Shen, D.; Feng, Y. (2016). Indole affects the formation of multicellular aggregate structures in Pantoea agglomerans YS19. J. Gen. Appl. Microbiol., 62 (1), 31–37. Yuan, L.; Burmølle, M.; Sadiq, F.; Wang, N.; He, G. (2018). Interspecies variation in biofilm-forming capacity of psychrotrophic bacterial isolates from Chinese raw milk. Food Control. 91. 10.1016. Zamir K. Punja (1997) Comparative efficacy of bacteria, fungi, and yeasts as biological control agents for diseases of vegetable crops, Can. J. Plant Pathol., 19:3, 315-323. Zhang, H.; Qian, Y.; Fan, D.; Tian, Y.; Huang, X. (2022). Biofilm formed by Hansschlegelia zhihuaiae S113 on root surface mitigates the toxicity of bensulfuron-methyl residues to maize. Environ. Pollut. (Barking, Essex : 1987), 292 (Pt A), 118366. Zhou, T.; Nan, B. (2017). Exopolysaccharides promote Myxococcus xanthus social motility by inhibiting cellular reversals. Mol. Microbiol., 103 (4),729–743. Zhulin, I. B.; Armitage, J. P. (1993). Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. J. Bacteriol., 175 (4), 952–958. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89870 | - |
| dc.description.abstract | 表面移行是一群細胞在表面上快速運動的模式,與生物膜的形成有關,而生物膜已被證明是造成食物腐敗的主要原因。表面移行和生物膜的形成都是一種細胞群體行為,然而,兩者之間的關係仍然存在著爭議。而群聚效應 (QS) 是細菌以透過一種稱為自誘導劑的小型分子與其他微生物進行交流和協調調節表面移行和生物膜生成的關鍵機制之一。先前實驗室從香瓜篩出Pantoea spp.,這一群會導致新鮮水果腐敗的細菌。研究表明,碳源是微生物主要的營養來源,也是影響細菌表面移行及生物膜形成的主要趨化劑。本研究進一步探討香瓜之中存在碳源種類,包括葡萄糖、果糖、蔗糖、半乳糖、棉子糖和L-蘋果酸,以不同濃度之單一或混合碳源對P. vagans M17的生長、生物膜生成和表面移行能力的影響,並觀察參與上述表型的基因表現量變化。結果表明, P. vagans M17在菌數介於10^6至10^7 CFU/μL之間,其生物膜形成主要受到葡萄糖濃度的影響,而表面移行則受到果糖濃度的影響。蔗糖濃度在5至100 mM的範圍內對表面移行能力之影響無明差異;而生物膜生成則在24和36小時之間無顯著差異,即對這兩個表型的影響相對適中。另外,在 0.5 至 5 mM 的濃度範圍內,P. vagans M17的表面移行能力會隨著棉子糖或L-蘋果酸濃度的增加而增強。此外,在混合碳源的實驗中,添加5 mM的 L-蘋果酸能明顯提升P. vagans M17的表面移行和生物膜形成能力,包括生物膜形成和鞭毛相關的基因表現量。而藉由生物膜調控基因 (yceP1)、胞外多醣合成基因 (amsF) 及鞭毛蛋白基因 (fliC2) 的表現量變化趨勢,觀察到相較於無添加組別,尤其在6小時時,yceP1、amsF和fliC2基因表現分別提升了1.52 ± 0.16、5.40 ± 0.17和6.49 ± 0.03 的相對量。由此推測L-蘋果酸的添加能夠增強P. vagans M17鞭毛及胞外多醣生成的能力,有助於菌株提早進入生物膜形成週期。此外,在P. vagans M17的PCR結果中確認了自誘導劑合成基因pagI和QS轉錄激活基因 pagR 的存在。未來,希望可以此研究為基礎,探討碳源對調控細菌表面移行及生物膜形成之QS系統,並藉此找出可以應用於食品加工或包裝的天然或合成化合物,以抑制QS系統而不影響食品品質,藉此延長食品的保存期限。 | zh_TW |
| dc.description.abstract | Swarming is a rapid surface-driven movement of a group of cells that is related to the formation of biofilms, which have been shown to be the major cause of food spoilage. Swarming and biofilm formation are both multicellular behaviors, but the relationship between the two is still controversial. Quorum sensing (QS) is one of the key mechanisms that bacteria use to regulate swarming and biofilm formation, through communication and coordination with other microorganisms using small molecules called autoinducers. Previously we have identified Pantoea spp., a group of abundant bacteria that cause spoilage to fresh fruits. Research has shown that carbon sources are the primary nutritional source and also the main chemoattractant affecting these two phenotypes of bacteria. Here, we investigated the effects of carbon sources which can be found in melon, including glucose, fructose, sucrose, galactose, raffinose, and L-malic acid, and examined the effects of different concentrations of individual or mixed carbon sources on the growth, biofilm formation, swarming ability and the expression levels of genes associated with these targeted phenotypes for P. vagans M17. Our results indicated that with a bacterial count ranging from 10^6 to 10^7 CFU/μL, the biofilm formation of P. vagans M17 is primarily influenced by the concentration of glucose, while swarming is greatly affected by the concentration of fructose. Sucrose concentration within the range of 5 to 100 mM showed no significant impact on swarming ability, while biofilm formation showed no significant difference between 24 and 36 hours, suggesting a relatively moderate impact on these two phenotypes. Additionally, within the concentration range of 0.5 to 5 mM, the swarming ability of P. vagans M17 was enhanced with increasing concentrations of raffinose or L-malic acid. Moreover, in experiments with mixed carbon sources, adding a small amount of L-malic acid significantly enhanced the swarming and biofilm formation abilities of P. vagans M17, including the expression of biofilm-regulating genes (yceP1), extracellular polysaccharide synthesis genes (amsF), and motility-related genes (fliC2). Compared with the control group without L-malic acid, especially at 6 hours, the expression levels of yceP1, amsF, and fliC2 genes increased by 1.52 ± 0.16, 5.40 ± 0.17, and 6.49 ± 0.03 relative quantity, respectively. This speculates that the addition of L-malic acid enhances the ability of P. vagans M17 for flagellar and exopolysaccharide generation, allowing the strain to enter the early biofilm formation cycle. Furthermore, the existence of the autoinducer synthesis gene pagI and the QS transcriptional activation gene pagR were confirmed in the PCR results of P. vagans M17. In the future, based on this study, it is hoped that the role of carbon sources in regulating bacterial swarming and biofilm formation through the QS system can be explored, and natural or synthetic compounds that can be applied to food processing or packaging to inhibit the QS system without affecting food quality can be identified to extend the shelf life of food. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:28:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:28:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 ii ABSTRACT iii GRAPHIC ABSTRACT v 目錄 vi 圖目錄 ix 表目錄 xi 附錄目錄 xii 第一章、前言 1 第二章、文獻回顧 2 第一節、 截切蔬果介紹 2 一、截切蔬果定義、產業發展及延長其保存期限之重要性 2 二、截切蔬果面臨之問題 3 第二節、 Pantoea spp. 5 第三節、 碳源 6 一、碳源是細菌的主要趨化劑 (chemoattractant) 之一 6 二、碳源在細菌內的主要運輸及代謝路徑 6 三、不同碳源在網紋香瓜中的佔比 8 第四節、 表面移行及生物膜 9 一、表面移行 (swarming) 9 二、生物膜 (biofilm) 11 第五節、碳源及菌株表面移行和生物膜形成之相關性 12 第三章、研究目的與架構 14 第四章、材料與方法 16 第一節、材料 16 一、實驗菌株 16 二、藥品 17 三、培養基及試劑之配製 19 四、儀器與設備 22 五、套裝軟體 24 第二節、 實驗方法 25 一、菌株特性分析 25 二、基因表現量分析 28 三、P. vagans M17 群聚效應基因鑒定 32 第五章、結果 33 第一節、碳源對 P. vagans M17 表面移行、生物膜和生長狀況之影響 33 一、葡萄糖 (glucose) 對菌株生物膜生成的影響較大 33 二、果糖 (fructose) 對菌株表面移行的影響較大 34 三、蔗糖 (sucrose) 對菌株表面移行及生物膜生成具中度影響 35 四、半乳糖 (galactose) 對菌株表面移行和生物膜生成的影響不大 36 五、棉子 (raffinose) 對菌株表面移行能力的影響呈現濃度效應 36 六、L-蘋果酸 (L-malic acid) 顯著促進菌株的表面移行能力並呈現濃度效應 37 第二節、混合碳源對 P. vagans M17 表面移行、生物膜和浮游微生物生長之影響 52 一、棉子糖的添加能促進菌株的表面移行能力 52 二、L-蘋果酸的添加能明顯促進菌株的表面移行能力,並提升生物膜形成能力 53 第三節、碳源對 P. vagans M17 運動及生物膜相關基因表現量的影響 67 一、管家和目標基因之引子擴增效率及專一性 68 二、L-蘋果酸會促進生物膜形成和運動相關基因的表現 68 第六章、討論 77 一、不同種類及濃度的碳源對 P. vagans M17 的表面移行和生物膜生成能力影響程度不同 77 二、L-蘋果酸的添加推測能夠增強 P. vagans M17 鞭毛及胞外多醣生成的能力,進而影響生物膜週期的發展 81 第七章、結論與展望 83 第八章、參考文獻 84 第九章、附錄 97 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 群聚效應 | zh_TW |
| dc.subject | Pantoea spp. | zh_TW |
| dc.subject | 表面移行 | zh_TW |
| dc.subject | 生物膜 | zh_TW |
| dc.subject | 碳源 | zh_TW |
| dc.subject | carbon sources | en |
| dc.subject | Pantoea spp. | en |
| dc.subject | quorum sensing | en |
| dc.subject | biofilm | en |
| dc.subject | swarming | en |
| dc.title | 碳源對Pantoea vagans M17表面移行及生物膜形成的影響 | zh_TW |
| dc.title | The effect of carbon sources on the swarming motility and biofilm formation of Pantoea vagans M17 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林旭陽;林乃君;李月嘉;呂廷璋 | zh_TW |
| dc.contributor.oralexamcommittee | Hsu-Yang Lin;Nai-Chun Lin;Yue-Jia Lee;Ting-Jang Lu | en |
| dc.subject.keyword | Pantoea spp.,表面移行,生物膜,碳源,群聚效應, | zh_TW |
| dc.subject.keyword | Pantoea spp.,carbon sources,swarming,biofilm,quorum sensing, | en |
| dc.relation.page | 123 | - |
| dc.identifier.doi | 10.6342/NTU202303915 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| Appears in Collections: | 食品科技研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Access limited in NTU ip range | 3.91 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
