Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89777
標題: 在元件網絡統合分析中重建斷裂網絡之條件及證據結構視覺化之方法
The conditions for reconnecting disconnected networks and the method for visualizing the evidence structure in component network meta-analysis
作者: 李驊
Hua Li
指導教授: 杜裕康
Yu-Kang Tu
關鍵字: 元件網絡統合分析,線性信號流圖,高斯消去法,視覺化,證據結構,
component network meta-analysis,linear signal-flow graph,gaussian elimination,visualization,evidence structure,
出版年 : 2023
學位: 博士
摘要: 網絡統合分析是用於比較多種治療相對效果的工具。最常使用的網絡統合分析模型(Lu & Ades模型)無法用於分析網絡斷裂的資料。儘管陸續有不同的解決方式被提出,但他們都有各自的缺點。而元件網絡統合分析便是其中一種潛在的分析斷裂網絡的方式。
元件網絡統合分析是基於相加性假設來分析多種組合式治療的元件效果。近年有文獻指出,元件網絡統合分析有可能使斷裂的網絡重新建立起連結,其必要條件是斷裂網絡中的子網絡之間要有共同元件;然而這並非唯一的必要條件,即使滿足前述的條件也不能保證網絡一定能透過元件網絡統合分析重建。因此,本研究的第一個目標是找齊所有的必要條件。我們證明要反應證據結構的M矩陣的秩等於元件數才可使所有的元件皆可估計。當斷裂網絡滿足這兩個條件,即可使用元件網絡分析進行重建。
接著,我們藉由發展一種視覺化證據結構的繪圖方式,來研究如何檢查連結不同子網路欠缺何種證據。然而標準的網絡圖採用治療當作結點,無法很好的呈現出元件網絡統合分析的證據結構,尤其是資料一複雜就難以判讀。因此,本研究的第二個目標是使用線性信號流圖以元件為結點呈現它們彼此的關係。新的繪圖方式能清楚地呈現元件本身的證據分布情況。由於是根據標準網絡圖轉換而來,我們也發現標準網絡圖其實可視作我們新圖的特例。而若資料複雜度較高使圖片變得難以判讀,還可以在繪圖前採高斯消去法簡化圖上的訊息,以輔助使用者解讀證據分布之情況。
Network meta-analysis (NMA) is used to compare the relative effects of multiple treatments. The most popular network meta-analysis model, namely the Lu & Ades model, cannot analyze a disconnected network. Several solutions have been proposed, but they all have their own disadvantages. One potential solution to analyzing a disconnected network is component network meta-analysis (CNMA).
CNMA estimates the effect of each component within multicomponent interventions under the assumption of additive component effects. A recent article pointed out that CNMA could reconnect disconnected networks when distinct subnetworks share common components. However, this condition itself is insufficient for connecting broken networks. Our first objective, therefore, is to find the necessary conditions. We proved that the rank of the design matrix M needs to be equal to the number of components for identifying the effects of components. A disconnected network will be reconnected as it these two conditions are satisfied.
We, then, investigated how to identify the missing evidence required to connect distinct subnetworks by developing a graphical tool for visualizing the evidence structure. The standard network plot uses treatments as its nodes, which is not suitable for visualizing the evidence structure in CNMA, particularly when the network plot is complicated. Therefore, our second objective is to propose the use of the linear signal-flow graph, which illustrates the relations between components as connections between nodes. Our proposed graph provides clear information about the relations among components within the networks of evidence, and it can be shown that the standard network plot is a special case of our proposed graph. Moreover, we can use gaussian elimination to extract information within our graph to help the user elaborate the evidence structure.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89777
DOI: 10.6342/NTU202300882
全文授權: 同意授權(全球公開)
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.91 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved