Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89777
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜裕康zh_TW
dc.contributor.advisorYu-Kang Tuen
dc.contributor.author李驊zh_TW
dc.contributor.authorHua Lien
dc.date.accessioned2023-09-20T16:20:12Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-20-
dc.date.issued2023-
dc.date.submitted2023-06-14-
dc.identifier.citation1. Burns PB, Rohrich RJ, Chung KC. The levels of evidence and their role in evidence-based medicine. Plastic and Reconstructive Surgery. 2011;128(1):305-310.
2. Uman LS. Systematic reviews and meta-analyses. Journal of the Canadian Academy of Child and Adolescent Psychiatry. 2011;20(1):57-59.
3. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials. 1986;7(3):177-188.
4. Efthimiou O, Debray TP, van Valkenhoef G, et al. GetReal in network meta-analysis: a review of the methodology. Research Synthesis Methods. 2016;7(3):236-263.
5. Biondi-Zoccai G. Umbrella reviews: evidence synthesis with overviews of reviews and meta-epidemiologic studies. Springer International Publishing; 2016.
6. Higgins JPT, Whitehead A. Borrowing strength from external trials in a meta-analysis. Statistics in Medicine. 1996;15(24):2733-2749.
7. Zhang J, Fu H, Carlin BP. Detecting outlying trials in network meta-analysis. Statistics in Medicine. 2015;34(19):2695-2707.
8. Mills EJ, Bansback N, Ghement I, et al. Multiple treatment comparison meta-analyses: a step forward into complexity. Clinical Epidemiology. 2011;3:193-202.
9. Zhang J, Carlin BP, Neaton JD, et al. Network meta-analysis of randomized clinical trials: reporting the proper summaries. Clinical Trials. 2014;11(2):246-262.
10. Lumley T. Network meta-analysis for indirect treatment comparisons. Statistics in Medicine. 2002;21(16):2313-2324.
11. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Statistics in Medicine. 2004;23(20):3105-3124.
12. Salanti G, Higgins JPT, Ades AE, Ioannidis JPA. Evaluation of networks of randomized trials. Statistical Methods in Medical Research. 2007;17(3):279-301.
13. Shim S, Yoon B-H, Shin I-S, Bae J-M. Network meta-analysis: application and practice using Stata. Epidemiology and Health. 2017;39:e2017047-e2017047.
14. Schmitz S, Maguire Á, Morris J, et al. The use of single armed observational data to closing the gap in otherwise disconnected evidence networks: a network meta-analysis in multiple myeloma. BMC Medical Research Methodology. 2018;18(1):66.
15. Reeves BC, Higgins JPT, Ramsay C, Shea B, Tugwell P, Wells GA. An introduction to methodological issues when including non-randomised studies in systematic reviews on the effects of interventions. Research Synthesis Methods. 2013;4(1):1-11.
16. Cameron C, Fireman B, Hutton B, et al. Network meta-analysis incorporating randomized controlled trials and non-randomized comparative cohort studies for assessing the safety and effectiveness of medical treatments: challenges and opportunities. Systematic Reviews. 2015;4:147.
17. Grimes DA, Schulz KF. Bias and causal associations in observational research. The Lancet. 2002;359(9302):248-252.
18. Dias S, Welton NJ, Sutton AJ, Ades AE. Evidence synthesis for decision making 5: the baseline natural history model. Medical Decision Making. 2013;33(5):657-670.
19. Hong H, Chu H, Zhang J, Carlin BP. A Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons. Research Synthesis Methods. 2016;7(1):6-22.
20. Dias S, Ades AE. Absolute or relative effects? Arm‐based synthesis of trial data. Research Synthesis Methods. 2016;7(1):23-28.
21. Rücker G, Schmitz S, Schwarzer G. Component network meta-analysis compared to a matching method in a disconnected network: A case study. Biometrical Journal. 2021;63(2):447-461.
22. Phillippo DM, Ades AE, Dias S, Palmer S, Abrams KR, Welton NJ. Methods for population-adjusted indirect comparisons in health technology appraisal. Medical Decision Making. 2018;38(2):200-211.
23. Mawdsley D, Bennetts M, Dias S, Boucher M, Welton N. Model-based network meta-analysis: a framework for evidence synthesis of clinical trial data. CPT: Pharmacometrics & Systems Pharmacology. 2016;5(8):393-401.
24. Welton NJ, Caldwell DM, Adamopoulos E, Vedhara K. Mixed treatment comparison meta-analysis of complex interventions: psychological interventions in coronary heart disease. American Journal of Epidemiology. 2009;169(9):1158-1165.
25. Rücker G, Petropoulou M, Schwarzer G. Network meta-analysis of multicomponent interventions. Biometrical Journal. 2020;62(3):808-821.
26. Goring SM, Gustafson P, Liu Y, Saab S, Cline SK, Platt RW. Disconnected by design: analytic approach in treatment networks having no common comparator. Research Synthesis Methods. 2016;7(4):420-432.
27. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PloS One. 2013;8(10):e76654.
28. Zhang J, Chu H, Hong H, Virnig BA, Carlin BP. Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness. Statistical Methods in Medical Research. 2017;26(5):2227-2243.
29. Tu Y-K. Directed acyclic graphs and structural equation modelling. In: Tu Y-K, Greenwood DC, eds. Modern Methods for Epidemiology. Dordrecht: Springer Netherlands; 2012:191-203.
30. Mulaik SA. Linear causal modeling with structural equations. 1st ed. New York: Chapman and Hall/CRC; 2009.
31. Coates C. Flow-graph solutions of linear algebraic equations. IRE Transactions on Circuit Theory. 1959;6(2):170-187.
32. Deo N. Graph theory with applications to engineering and computer science. Mineola, New York: Dover Publications; 2016.
33. Fraleigh JB, Beauregard RA. Linear algebra. 3rd ed. Taipei: Pearson Education Taiwan Ltd.; 2012.
34. Leon SJ, Pillis LGd. Linear algebra with applications. 10th ed: Pearson; 2021.
35. Chen PH, Ho CL, Lin C, et al. Treatment outcomes of novel targeted agents in relapse/refractory chronic lymphocytic leukemia: a systematic review and network meta-analysis. Journal of Clinical Medicine. 2019;8(5).
36. Furman RR, Cheng S, Lu P, et al. Ibrutinib resistance in chronic lymphocytic leukemia. New England Journal of Medicine. 2014;370(24):2352-2354.
37. Burger JA, Sivina M, Jain N, et al. Randomized trial of ibrutinib vs ibrutinib plus rituximab in patients with chronic lymphocytic leukemia. Blood. 2019;133(10):1011-1019.
38. Sharman JP, Coutre SE, Furman RR, et al. Final results of a randomized, phase III study of rituximab with or without idelalisib followed by open-label idelalisib in patients with relapsed chronic lymphocytic leukemia. Journal of Clinical Oncology. 2019;37(16):1391-1402.
39. Faggion CM, Jr., Listl S, Frühauf N, Chang HJ, Tu YK. A systematic review and Bayesian network meta-analysis of randomized clinical trials on non-surgical treatments for peri-implantitis. Journal of Clinical Periodontology. 2014;41(10):1015-1025.
40. Chaimani A CD, Li T, Higgins JPT, Salanti G. Chapter 11: undertaking network meta-analyses. In: Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, ed. Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022): Cochrane; 2022.
41. Cox DR. Interaction. International Statistical Review / Revue Internationale de Statistique. 1984;52(1):1-24.
42. Konig J, Krahn U, Binder H. Visualizing the flow of evidence in network meta-analysis and characterizing mixed treatment comparisons. Statistics in Medicine. 2013;32(30):5414-5429.
43. Papakonstantinou T, Nikolakopoulou A, Rücker G, et al. Estimating the contribution of studies in network meta-analysis: paths, flows and streams [version 3; peer review: 2 approved, 1 approved with reservations]. F1000Research. 2018;7(610).
44. Phillippo DM, Dias S, Ades AE, Didelez V, Welton NJ. Sensitivity of treatment recommendations to bias in network meta-analysis. Journal of the Royal Statistical Society, Series A (Statistics in Society). 2018;181(3):843-867.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89777-
dc.description.abstract網絡統合分析是用於比較多種治療相對效果的工具。最常使用的網絡統合分析模型(Lu & Ades模型)無法用於分析網絡斷裂的資料。儘管陸續有不同的解決方式被提出,但他們都有各自的缺點。而元件網絡統合分析便是其中一種潛在的分析斷裂網絡的方式。
元件網絡統合分析是基於相加性假設來分析多種組合式治療的元件效果。近年有文獻指出,元件網絡統合分析有可能使斷裂的網絡重新建立起連結,其必要條件是斷裂網絡中的子網絡之間要有共同元件;然而這並非唯一的必要條件,即使滿足前述的條件也不能保證網絡一定能透過元件網絡統合分析重建。因此,本研究的第一個目標是找齊所有的必要條件。我們證明要反應證據結構的M矩陣的秩等於元件數才可使所有的元件皆可估計。當斷裂網絡滿足這兩個條件,即可使用元件網絡分析進行重建。
接著,我們藉由發展一種視覺化證據結構的繪圖方式,來研究如何檢查連結不同子網路欠缺何種證據。然而標準的網絡圖採用治療當作結點,無法很好的呈現出元件網絡統合分析的證據結構,尤其是資料一複雜就難以判讀。因此,本研究的第二個目標是使用線性信號流圖以元件為結點呈現它們彼此的關係。新的繪圖方式能清楚地呈現元件本身的證據分布情況。由於是根據標準網絡圖轉換而來,我們也發現標準網絡圖其實可視作我們新圖的特例。而若資料複雜度較高使圖片變得難以判讀,還可以在繪圖前採高斯消去法簡化圖上的訊息,以輔助使用者解讀證據分布之情況。
zh_TW
dc.description.abstractNetwork meta-analysis (NMA) is used to compare the relative effects of multiple treatments. The most popular network meta-analysis model, namely the Lu & Ades model, cannot analyze a disconnected network. Several solutions have been proposed, but they all have their own disadvantages. One potential solution to analyzing a disconnected network is component network meta-analysis (CNMA).
CNMA estimates the effect of each component within multicomponent interventions under the assumption of additive component effects. A recent article pointed out that CNMA could reconnect disconnected networks when distinct subnetworks share common components. However, this condition itself is insufficient for connecting broken networks. Our first objective, therefore, is to find the necessary conditions. We proved that the rank of the design matrix M needs to be equal to the number of components for identifying the effects of components. A disconnected network will be reconnected as it these two conditions are satisfied.
We, then, investigated how to identify the missing evidence required to connect distinct subnetworks by developing a graphical tool for visualizing the evidence structure. The standard network plot uses treatments as its nodes, which is not suitable for visualizing the evidence structure in CNMA, particularly when the network plot is complicated. Therefore, our second objective is to propose the use of the linear signal-flow graph, which illustrates the relations between components as connections between nodes. Our proposed graph provides clear information about the relations among components within the networks of evidence, and it can be shown that the standard network plot is a special case of our proposed graph. Moreover, we can use gaussian elimination to extract information within our graph to help the user elaborate the evidence structure.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:20:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-20T16:20:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖片目錄 ix
第1章 研究背景 1
第2章 文獻回顧 5
2.1 Lu & Ades模型 5
2.1.1 無法用於斷裂網絡的原因 7
2.2 處理斷裂網絡的方法 7
2.2.1 加入觀察性研究 7
2.2.2 將斷裂的網絡做個別分析 8
2.2.3 其他模型:Baseline模型 8
2.2.4 其他模型:Arm-based模型 10
2.2.5 其他模型:人口調整方法 11
2.3 元件網絡統合分析 12
2.3.1 如何連結斷裂網絡 13
2.3.2 共同元件 14
2.3.3 網絡圖之於元件網絡統合分析 14
2.4 結構方程模型的路徑圖 16
2.5 研究目的 19
第3章 方法 20
3.1 整理資料結構 20
3.1.1 範例 21
3.2 是否能夠連結 21
3.3 交互作用項 22
3.3.1 範例 23
3.4 視覺化M矩陣之訊息 24
3.4.1 線性信號流圖 24
3.4.2 原始M矩陣之訊息 26
3.4.3 透過高斯消去法簡化之訊息 30
3.4.4 交互作用項 33
第4章 實際範例 36
第5章 結果 39
5.1 資料一:無法透過元件網絡統合分析連通之網絡 39
5.2 資料二:可透過元件網絡統合分析重建之網絡 43
第6章 討論 48
6.1 利用元件網絡統合分析連接斷裂網絡的條件 48
6.2 信號流圖跟結構方程模式路徑圖之間的差異 49
6.3 標準網絡圖可視為信號流圖的一個特例 50
6.4 信號流圖之延伸應用 51
6.5 未來研究方向 52
參考文獻 53
附錄 61
Part A: R code for drawing a signal-flow graph 61
1. Packages 61
2. Function: Rearrange a matrix 61
3. Function: Gaussian Elimination 62
4. Function: Draw a signal-flow graph 66
5. Load the data of Example 1 73
6. Obtain and visualize the M matrix 74
7. How to add interaction 75
Part B: Dataset for Example 1 79
Part C: Dataset for Example 2 80
-
dc.language.isozh_TW-
dc.subject證據結構zh_TW
dc.subject視覺化zh_TW
dc.subject線性信號流圖zh_TW
dc.subject元件網絡統合分析zh_TW
dc.subject高斯消去法zh_TW
dc.subjectlinear signal-flow graphen
dc.subjectcomponent network meta-analysisen
dc.subjectgaussian eliminationen
dc.subjectevidence structureen
dc.subjectvisualizationen
dc.title在元件網絡統合分析中重建斷裂網絡之條件及證據結構視覺化之方法zh_TW
dc.titleThe conditions for reconnecting disconnected networks and the method for visualizing the evidence structure in component network meta-analysisen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee李文宗;張淑惠;蕭朱杏;陳錦華zh_TW
dc.contributor.oralexamcommitteeWen-Chung Lee;Shu-Hui Chang;Chuhsing Kate Hsiao;Jin-Hua Chenen
dc.subject.keyword元件網絡統合分析,線性信號流圖,高斯消去法,視覺化,證據結構,zh_TW
dc.subject.keywordcomponent network meta-analysis,linear signal-flow graph,gaussian elimination,visualization,evidence structure,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202300882-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-06-15-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved