Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89732
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇zh_TW
dc.contributor.advisorEric Y. Chuangen
dc.contributor.author廖乃勳zh_TW
dc.contributor.authorNai-Shun Liaoen
dc.date.accessioned2023-09-20T16:08:33Z-
dc.date.available2025-08-31-
dc.date.copyright2023-09-20-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation1. Colorectal cancer facts & figures 2023-2025. Atlanta: American Cancer Society 2023; Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/colorectal-cancer-facts-and-figures-2023.pdf.
2. Siegel, R.L., et al., Colorectal cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 2023. 73(3): p. 233-254.
3. 衛生福利部. 110年國人死因統計結果. 2022 2022/06/30; Available from: https://www.mohw.gov.tw/cp-16-70314-1.html.
4. Islami, F., et al., Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA: A Cancer Journal for Clinicians, 2018. 68(1): p. 31-54.
5. Strum, W.B., Colorectal adenomas. New England Journal of Medicine, 2016. 374(11): p. 1065-1075.
6. Patel, S.G., et al., Advanced adenomas may be a red flag for hereditary cancer syndromes. Hereditary Cancer in Clinical Practice, 2021. 19(1): p. 8.
7. Chattopadhyay, I., et al., Exploring the role of gut microbiome in colon cancer. Applied Biochemistry and Biotechnology, 2021. 193(6): p. 1780-1799.
8. Wong, S.H. and J. Yu, Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Reviews Gastroenterology & Hepatology, 2019. 16(11): p. 690-704.
9. Abellan-Schneyder, I., et al., Primer, pipelines, parameters: Issues in 16S rRNA gene sequencing. mSphere, 2021. 6(1): p. e01202-20.
10. Bolyen, E., et al., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019. 37(8): p. 852-857.
11. Callahan, B.J., et al., DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 2016. 13(7): p. 581-3.
12. Quast, C., et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 2012. 41(D1): p. D590-D596.
13. DeSantis, T.Z., et al., Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 2006. 72(7): p. 5069-5072.
14. Segata, N., et al., Metagenomic biomarker discovery and explanation. Genome Biology, 2011. 12(6): p. R60.
15. Lin, H. and S.D. Peddada, Analysis of compositions of microbiomes with bias correction. Nature Communications, 2020. 11(1): p. 3514.
16. Hung, Y.-M., et al., EasyMAP: A user-friendly online platform for analyzing 16S ribosomal DNA sequencing data. New Biotechnology, 2021. 63: p. 37-44.
17. Langille, M.G.I., et al., Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013. 31(9): p. 814-821.
18. Schloss, P.D., et al., Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009. 75(23): p. 7537-7541.
19. Bjerrum, A., et al., Long-term risk of colorectal cancer after screen-detected adenoma: Experiences from a Danish gFOBT-positive screening cohort. International Journal of Cancer, 2020. 147(4): p. 940-947.
20. Baxter, N.T., et al., Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Medicine, 2016. 8(1): p. 37.
21. Dadkhah, E., et al., Gut microbiome identifies risk for colorectal polyps. BMJ Open Gastroenterology, 2019. 6(1): p. e000297.
22. Zackular, J.P., et al., The human gut microbiome as a screening tool for colorectal cancer. Cancer Prevention Research, 2014. 7(11): p. 1112-1121.
23. Yang, Y., et al., Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer. Theranostics, 2019. 9(14): p. 4101-4114.
24. Cong, J., et al., A pilot study: Changes of gut microbiota in post-surgery colorectal cancer patients. Frontiers in Microbiology, 2018. 9: p. 2777.
25. McMurdie, P.J. and S. Holmes, phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE, 2013. 8(4): p. e61217.
26. Lin, H. and S.D. Peddada, Analysis of microbial compositions: a review of normalization and differential abundance analysis. npj Biofilms and Microbiomes, 2020. 6(1): p. 60.
27. Nearing, J.T., et al., Microbiome differential abundance methods produce different results across 38 datasets. Nature Communications, 2022. 13(1): p. 342.
28. Wang, C., et al., Microbial risk score for capturing microbial characteristics, integrating multi-omics data, and predicting disease risk. Microbiome, 2022. 10(1): p. 121.
29. Gloor, G., ALDEx2: ANOVA-like differential expression tool for compositional data. ALDEX Manual Modular, 2015. 20: p. 1-11.
30. Mallick, H., et al., Multivariable association discovery in population-scale meta-omics studies. PLOS Computational Biology, 2021. 17(11): p. e1009442.
31. Magne, F., et al., The Firmicutes/Bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients, 2020. 12(5).
32. Murri, M., et al., Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Medicine, 2013. 11: p. 46.
33. Fang, C.Y., et al., Colorectal cancer stage-specific fecal bacterial community fingerprinting of the taiwanese population and underpinning of potential taxonomic biomarkers. Microorganisms, 2021. 9(8).
34. Wang, Y., et al., Alterations in the oral and gut microbiome of colorectal cancer patients and association with host clinical factors. International Journal of Cancer, 2021. 149(4): p. 925-935.
35. Zhao, L., et al., Parvimonas micra promotes colorectal tumorigenesis and is associated with prognosis of colorectal cancer patients. Oncogene, 2022. 41(36): p. 4200-4210.
36. Osman, M.A., et al., Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Scientific Reports, 2021. 11(1): p. 2925.
37. Guven, D.C., et al., Analysis of Fusobacterium nucleatum, Streptococcus gallolyticus and Porphyromonas gingivalis in saliva in colorectal cancer patients and healthy controls. Journal of Clinical Oncology, 2018. 36(15_suppl): p. e15617-e15617.
38. Mo, Z., et al., Meta-analysis of 16S rRNA microbial data identified distinctive and predictive microbiota dysbiosis in colorectal carcinoma adjacent tissue. mSystems, 2020. 5(2): p. 10.1128/msystems.00138-20.
39. Wu, Y., et al., Identification of microbial markers across populations in early detection of colorectal cancer. Nature Communications, 2021. 12(1): p. 3063.
40. Ladabaum, U., et al., Strategies for colorectal cancer screening. Gastroenterology, 2020. 158(2): p. 418-432.
41. Selby, K., et al., Effect of sex, age, and positivity threshold on fecal immunochemical test accuracy: A systematic review and meta-analysis. Gastroenterology, 2019. 157(6): p. 1494-1505.
42. Wirbel, J., et al., Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nature Medicine, 2019. 25(4): p. 679-689.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89732-
dc.description.abstract大腸直腸癌(簡稱大腸癌)在美國與台灣皆是第三大診斷癌症。通過大腸癌篩檢和診斷可以找出高風險的患者並且大幅降低大腸癌的長期風險。許多研究已經表明大腸癌與腸道微生物菌相之間存在許多關聯。利用機器學習模型來檢測潛在患者的腸道菌相有潛力比傳統的大便篩檢測試更早地檢測到大腸癌。在這篇研究當中,我們構建了一個新的機器學習流程,使用微生物菌相數據來識別大腸癌、大腸腺瘤和健康組別,並評估每個人的大腸癌風險分數。從SRA數據庫或其他研究中提供的數據中收集了具有16S rRNA定序數據的糞便樣本。根據ANCOM-BC演算法和卡方檢定,共識別出109個與大腸癌相關的菌屬。使用10組交叉驗證對隨機森林分類器進行訓練並且通過外部驗證資料評估模型的分類表現。結果顯示,在區分對照組和大腸癌組方面,隨機森林模型具有優異的分類性能,在10組交叉驗證中有90%的AUC並在外部驗證中有82%的AUC。在通過分類對照組對比腺瘤加大腸癌組以達到大腸腺瘤早期篩檢的策略中,隨機森林模型在10組交叉驗證中表現出87%的靈敏度,在外部驗證中表現出97%的靈敏度。最後使用ANCOM-BC演算法找出的7個生物標記菌屬被用來計算微生物風險得分 (MRS),可以被用來作為大腸癌的風險指標。總而言之,我們開發了一種使用16S rRNA腸道微生物菌相數據的CRC分類新流程,並識別出了特定於大腸癌的腸道微生物菌屬。該流程和生物標記菌屬可以作為早期檢測CRC的非侵入性工具使用。zh_TW
dc.description.abstractColorectal cancer (CRC) is the third leading diagnosed cancer and cause of cancer death in the United State and Taiwan. The long-term risk of CRC can be managed through the identification of high-risk patients by CRC screening and diagnosis. Many studies have shown the associations between CRC and gut microbiome. The machine learning models have the potential to detect CRC earlier than the conventional stool screening test. We constructed a novel machine learning pipeline to identify CRC, colorectal adenoma, and healthy groups, and evaluated the risk of CRC for each person using microbiome data. Stool samples with16S rRNA sequence data were collected from the NCBI SRA database or supplementary data provided in studies. In total, 109 CRC-associated genera were identified based on ANCOM-BC algorithm and chi-square test. Random forest (RF) classifiers were training with 10-fold cross validation (CV). Model performance was evaluated by the external validation. Our results showed that the RF model illustrated excellent performance with 90% AUC for 10-fold CV and 82% AUC for external validation in classifying control vs CRC groups. RF model performed well with 87% sensitivity for 10-fold CV and 97% sensitivity for external validation in early detection strategy by classifying control vs adenoma plus CRC groups. Finally, 7 biomarkers identified by ANCOM-BC algorithm were utilized to calculate a microbial risk score (MRS), which could be regarded as an index the possibility of CRC. In summary, we developed a new pipeline for CRC classification using 16s rRNA gut microbiome data and identified CRC-specific gut microbiome genera. The pipeline and biomarkers could be used as a non-invasive tool for the early detection of CRC.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:08:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-20T16:08:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
List of tables VI
List of figures VII
Chapter 1. Introduction 1
1.1 Colorectal cancer 1
1.2 Colorectal cancer and gut microbiome 2
1.3 Prokaryotic 16S rRNA gene sequencing 3
1.4 Easy Microbiome Analysis Platform (EasyMAP) 5
1.5 Motivation 6
Chapter 2. Materials and methods 8
2.1 Published datasets collection 9
2.2 Data preprocessing 11
2.3 Differential abundance analysis and feature selection 12
2.4 Machine learning model training and external validation 18
2.5 Microbial risk score (MRS) 20
Chapter 3. Results 23
3.1 Alterations of gut microbial composition between control, adenoma and CRC groups 23
3.2 Features selection across control, adenoma and CRC groups 26
3.3 Microbial classification models for control, adenoma and CRC groups 28
3.4 Microbial risk score for CRC 31
Chapter 4. Discussion and conclusions 34
References 43
-
dc.language.isoen-
dc.subject腸道菌相zh_TW
dc.subject糞便早期篩檢zh_TW
dc.subject微生物風險得分zh_TW
dc.subject機器學習zh_TW
dc.subject大腸直腸癌zh_TW
dc.subjectCRCen
dc.subjectMRSen
dc.subjectStool-based screeningen
dc.subjectMachine learningen
dc.subjectGut microbiomeen
dc.title利用腸道微生物菌相早期檢測大腸癌和大腸腺瘤的新型機器學習方法zh_TW
dc.titleA novel machine learning pipeline for early detection of colorectal cancer and colorectal adenoma using gut microbiome dataen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳佩君zh_TW
dc.contributor.coadvisorPei-Chun Chenen
dc.contributor.oralexamcommittee賴亮全;陳翔瀚zh_TW
dc.contributor.oralexamcommitteeLiang-Chuan Lai;Hsiang-Han Chenen
dc.subject.keyword大腸直腸癌,腸道菌相,機器學習,微生物風險得分,糞便早期篩檢,zh_TW
dc.subject.keywordCRC,Gut microbiome,Machine learning,MRS,Stool-based screening,en
dc.relation.page47-
dc.identifier.doi10.6342/NTU202303093-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2025-08-31-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf1.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved