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Abstract

Colorectal cancer (CRC) is the third leading diagnosed cancer and cause of cancer
death in the United State and Taiwan. The long-term risk of CRC can be managed through
the identification of high-risk patients by CRC screening and diagnosis. Many studies
have shown the associations between CRC and gut microbiome. The machine learning
models have the potential to detect CRC earlier than the conventional stool screening test.
We constructed a novel machine learning pipeline to identify CRC, colorectal adenoma,
and healthy groups, and evaluated the risk of CRC for each person using microbiome data.
Stool samples with16S rRNA sequence data were collected from the NCBI SRA database
or supplementary data provided in studies. In total, 109 CRC-associated genera were
identified based on ANCOM-BC algorithm and chi-square test. Random forest (RF)
classifiers were training with 10-fold cross validation (CV). Model performance was
evaluated by the external validation. Our results showed that the RF model illustrated
excellent performance with 90% AUC for 10-fold CV and 82% AUC for external
validation in classifying control vs CRC groups. RF model performed well with 87%
sensitivity for 10-fold CV and 97% sensitivity for external validation in early detection
strategy by classifying control vs adenoma plus CRC groups. Finally, 7 biomarkers
identified by ANCOM-BC algorithm were utilized to calculate a microbial risk score
(MRS), which could be regarded as an index the possibility of CRC. In summary, we
developed a new pipeline for CRC classification using 16s rRNA gut microbiome data
and identified CRC-specific gut microbiome genera. The pipeline and biomarkers could

be used as a non-invasive tool for the early detection of CRC.

Key word: CRC, Gut microbiome, Machine learning, MRS, Stool-based screening
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Chapter 1. Introduction

1.1 Colorectal cancer

Colorectal cancer (CRC) is a disease characterized by uncontrolled proliferation of
abnormal cells specifically affecting the colon or rectum [1]. CRC is the third leading
diagnosed cancer and cause of cancer death in the United State [2] and Taiwan [3]. A
substantial portion of CRC cases and fatalities can be attributed to modifiable risk factors
such as smoking, an unhealthy diet, excessive alcohol consumption, physical inactivity,

and obesity [4].

The majority of CRCs originate from noncancerous growths known as polyps, which
develop in the inner lining of the colon or rectum [1]. One type of polyps called adenomas
are recognized as precursors of CRC [5]. Adenomas may slowly progress to CRC over
time by growing through the mucosa and invading blood or lymph vessels. Having higher
risk of developing CRC, advanced adenomas is a kind of adenoma defined as an adenoma
greater than 1 cm, more than three adenomas of any size, or an adenoma with villous

histology [6]. Patients with advanced adenomas are more likely to be diagnosed with CRC.

Because of the slowly progression from adenoma to CRC, a significant proportion
of CRC incidence can be prevented through the adoption of regular screening practices
and surveillance [6]. Visual examination and stool-based test are two major methods for
current CRC screening strategies. Visual examinations, including colonoscopy and
flexible sigmoidoscopy, have the best performance for CRC screening. However, visual

examinations require bowel cleaning and invasive surgery. Stool-based tests, such as

1
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guaiac-based fecal occult blood test (JFOBT) and Fecal immunochemical test (FIT), are
low cost and non-invasive but with low sensitivity for adenoma and advanced adenoma.

Both of the screening methods have their advantages and limitation.

1.2 Colorectal cancer and gut microbiome

The Gut microbiome is a large population of microorganisms that lives in the host
digest system and involves in the host nutrition, metabolism, and immunity. Dysbiosis of
the human gut microbiome plays a significant role in the development of CRC through
several different mechanisms. First, microorganisms such as F. nucleatum can induce cell
inflammation and activate signaling pathway to promote tumor development on intestinal
epithelial cell. Second, microbial metabolisms produce metabolites from dietary and host
compounds. Secondary bile acids and short chain fatty acids (SCFA) are highly correlated
to gut microbiome and diets. These metabolites can influence the risk and formation of
tumor. Third, toxins such as Cytolethal distending toxin (CDT) and colibactin produced
by gut microbiome can cause DNA damaging effects. These genotoxin can induce double

strand DNA degrade and cause genomic instability [7].

Wong and Yu [8] indicated that the two major potential clinical applications in CRC
are detecting the screening/prognostic biomarkers and modulation for CRC
treatment/prevention. Due to the limitation of current fecal immunochemical test, the
stool-based gut microbial genes and metabolites have the potential to be the non-invasive
screening or prognostic biomarkers for adenoma, advanced adenoma and CRC. Besides,
modulating the gut microbiome can reduce the adverse effects and mediate the anticancer

effects of immunotherapy and chemotherapy. Using dietary intervention, gut microbial
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probiotics, prebiotics, fecal microbiota transplantation (FMT) and other methods, gut
microbiome can be modulated to prevent CRC or improve treatment response of CRC.
The findings from several studies have presented an opportunity to apply gut microbiome
discoveries into practical applications that can significantly reduce the incidence and

mortality rates of CRC.

1.3 Prokaryotic 16S rRNA gene sequencing

The prokaryotic 16S rRNA gene is about 1500 bp long, encoding the small subunit
ribosomal RNA fragment of prokaryotic ribosomes. The structure of 16S rRNA gene
includes highly conserved gene regions and nine hypervariable regions, called V1 ~ V9
regions. The highly conserved regions allow universal primer binding across different
bacteria and archaea, and the hypervariable regions can be used to classify taxon and
explore the taxonomic composition of microbiome, as shown in Figure 1.1 [9]. The most
commonly used combination of hypervariable regions for 16S rRNA sequencing are V1

~V2/V3, V3~ V4 and V4 regions [9].

515F-944R
27F-338R 341F-785R
27F-534R - 939F-1378R
515F-806R 1115F-1492R
V1 V2 V3 V4 V5 Ve . vr. V8 Vo
[] Conserved region [ Variable region Il Hypervariable region

Figure 1.1: The structure of prokaryotic 16S rRNA gene and different primer pairs
to sequence hypervariable regions [9].

The 16S rRNA sequencing and analysis pipeline start with sample preparation. Stool,
tissue, soil or water samples can be collected and preprocessed to extract the

environmental DNA. Polymerase chain reaction (PCR) is used to amplify these DNA
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samples. After sequencing these amplicons, the sequencing machine can generate fastq

file containing sequencing reads of nucleotides and quality for each base pairs.

Based on the amplicon sequencing data analysis pipeline of Quantitative Insights
Into Microbial Ecology 2 (QIIME 2) [10] (Figure 1.2 [10]), the first step is to demultiplex
raw sequencing reads in the fastq file by detecting the barcodes and mapping them back
to their samples. Next, the denoising and clustering step uses denoising methods such as
DADAZ [11] to remove low quality and chimeric reads based on quality scores, correct
amplicon sequencing errors in reads and join denoised paired-end reads. After denoising
and clustering, Amplicon sequence variant (ASV) feature table and representative reads
for each ASV are generated. The ASV feature table contains sequence counts for each
ASV in samples, which is called absolute abundance. Relative abundance is calculated
by applying total-sum scaling (TSS) to absolute abundance. The representative reads are
selected from each ASV to reduce the number of reads in further analysis steps. To
identify the potential organisms each ASV represented, Taxonomy is assigned to each
ASV by comparing the representative read of ASV to a 16S rRNA reference database,
like SILVA [12] and Greengenes [13].Finally, the ASV table and taxonomy assignment
result can be applied to several different analyses, such as diversity analysis and
differential abundance analysis. Diversity analysis includes alpha- and beta-diversity
analyses. Shannon, Simpson and observed index are common alpha-diversity indices to
measure the richness and evenness of ASV in each sample. Beta diversity like Bray-curtis
and unifrac compare the similarity or dissimilarity between two samples. Differential
abundance analysis, such as Linear Discriminant Analysis Effect Size (LefSe) [14] or

Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) [15],
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identify significant ASVs which are higher or lower abundant between two group of

samples.
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Figure 1.2: QIIMEZ2 amplicon sequencing data analysis pipeline [10].

1.4 Easy Microbiome Analysis Platform (EasyMAP)

Easy Microbiome Analysis Platform (EasyMAP) [16] is an online platform for 16S
rRNA gene sequencing data analysis. The analysis pipeline of EasyMAP is based on
QIIMEZ2 pipeline described in Section 1.3. In brief, the raw reads in the sequence files
are demultiplex into the samples based on the sample metadata uploaded by user. The
DADA2 algorithm is conducted for quality control and denoising. The taxonomy
classifiers are used to do the taxonomy assignment. Pretrained VV3-V4 and V4 classifiers
on Greengenes and Silva are provided. Classifiers for specific regions can also be trained
based on the primer set provided by user. For data visualization and analysis, alpha

diversity plots, beta diversity plots, bar plots and heatmaps are provided in EasyMAP. To
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further use the ASV table and taxonomy assignment result from the QIIMEZ2 pipeline,
EasyMAP also integrates LefSe and PICRUSt [17] analysis modules for microbiome

differential abundance analysis and functional composition prediction.

The advantages of the EasyMAP against QIIME2, Mothur [18] or other analysis
tools are online platform, easy file management, user-friendly interface, and step-by-step
guidance. EasyMAP analysis is conducted on an online web server, eliminating the need
for users to prepare their own computing resource. User can manage their file and output
results on the EasyMAP web page, intead of a command line interface Linux server. The
user-friendly interface and step-by-step guidance provided by EasyMAP enable users
with limited bioinformatics knowledge to navigate through the analysis conveniently.
Users with limited bioinformatics knowledge can follow the instruction on the EasyMAP
web page and the tutorial to complete the whole pipeline. Therefore, EasyMAP is a user-
friendly tool specifically designed for conducting comprehensive analysis of 16S rRNA

sequencing data.

1.5 Motivation

The motivation of this study is the potential clinical applications of the gut
microbiome. The gut microbiome had proven to affect various human disease and cancer
by affect disease progression and prognosis, and had the potential to act as the screening
biomarker for disease prevention or the probiotics for disease treatment, including
colorectal cancer. Colorectal cancer (CRC) ranks as the third most commonly diagnosed
cancer and significantly contribute to cancer-related death in both the United States and

Taiwan. Despite its impact, the long-term risk of CRC can be effectively managed
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through the identification of high-risk patients and underwent CRC screening and
diagnosis, followed by regular colonoscopy surveillance [19]. Colonoscopy surveillance
Is the most precise way to identify both adenoma, advanced adenoma and CRC, but it is
expensive, non-convenient and invasive. The stool-based CRC screening tools, such as
FIT and gFOBT, are low-cost and non-invasive, but they have low sensitivity to adenoma
and advanced adenoma and may produce false-positive test results. Therefore, this study
is aimed at develop classification methods based on stool microbiome data for non-
invasive CRC screening test in early detection. Additionally, a scoring model is also built
to indicate the risk of getting CRC for patients. Patients with higher score may have higher

risk of getting CRC, and can get further surveillance by colonoscopy.
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Chapter 2. Materials and methods

This study is consisted of two parts. The first part is to construct of classification
model, which could be used as a screening model for CRC prevention using gut
microbiome data. The second part is to establish a scoring model, which could give a
score to potential CRC patients that indicate the risk for getting CRC. The flow chart of
this study is in Figure 2.1. Stool samples with 16S rRNA gene sequencing data were
collected from published studies (Section 2.1). 16S rRNA gene sequencing data were
downloaded from NCBI SRA database and preprocess by EasyMAP pipeline. The ASV
tables generated after preprocessing were merged and convert to abundance and
appearance data (Section 2.2). Biomarker selection method was based on ANCOM-BC
and chi-square test introduced in Section 2.3 and Figure 2.2. Identified biomarker
features were served as the models input of random forest (RF) machine learning model
and microbial risk score (MRS) model for adenoma and CRC. The training and validation
method of the RF model was described in Section 2.4. The MRS model for adenoma and

CRC was constructed based on MRS framework described in Section 2.5.
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Figure 2.1: The workflow overview of the data preprocessing and model training.

2.1 Published datasets collection

Published studies sequencing stool-based 16S rRNA sequencing data from patients
with CRC, advanced adenoma (AA), adenoma and healthy controls prior to treatment or
colonoscopy were included in this study. Patients were diagnosed by colonoscopy.
Patients without adenoma or CRC were included for healthy controls. Metadata that
provide labels and information of the samples were collected from National Center for
Biotechnology Information (NCBI) Sequence Read Archive (SRA) database or
supplementary data provided by datasets. 16S rRNA gene sequencing fastq files of
samples in the datasets with data uploaded to NCBI SRA database were accessed and
downloaded using SRA access code of each dataset and fasterq-dump tool in SRA toolkit.
In the datasets providing 16S rRNA gene sequencing data in supplementary data, fastq

files of samples were directly downloaded. Comma-separated values (CSV) ASV tables
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of samples in the datasets providing ASV tables were directly downloaded from

supplementary data. Samples were excluded if metadata were missing.

There were five datasets collected in this study. Reducing the effect of different
country on gut microbiome, the RF and MRS models were constructed by the datasets
from USA. In Baxter dataset, patients were inclued in four cities in USA/Canada, able to
collect 58 mL of blood and a stool sample. In Dadkhah dataset, patients were included
for clinical trial from January 2014 and June 2015. In Zackular dataset, patients were
included in four cities in USA/Canada, able to collect 58 ml of blood two times and
complete an gFOBT Kkit. In Yang dataset, patients were included by colonoscopy
examination at Tongji University Affiliated Tenth People's Hospital from January 2014
to September 2014. In Cong dataset, patients were included from the affiliated hospital

of Qingdao University.

For the RF models, Baxter and Dadkhah datasets were selected to train the models
with different classification strategies. For the MRS model, the Baxter dataset was the
discovery cohort to classify the control and CRC groups. The RF and MRS models were

external validated by the Zackular dataset.

10
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Table 2.1: The study design of the published datasets.

Sequencing
Study  Data storage Country )
region
Baxter
SRA USA/Canada V4
[20]
Dadkhah
SRA USA V1-V3
[21]
Zackular  Fastq files in
USA/Canada V4
[22] supplementary
Yang ASV table in )
China V3-V4
[23] supplementary
Cong )
SRA China V3-V4
[24]

2.2 Data preprocessing

Fastq files of 16S rRNA sequencing data contained raw reads and their sequencing
quality score. Raw reads were mixed with reads from different samples, had uneven
quality and lacked of taxonomy assignment. Therefore, data preprocessing for 16S rRNA
sequencing data was needed to reveal the gut microbiome information contained in raw

reads data.

Raw  sequence data  were uploaded to EasyMAP  website

(http://easymap.cgm.ntu.edu.tw/) and processed by EasyMAP pipeline (Figure 1.2). Raw

sequencing reads were demultiplexed to their belonging samples and trimmed from the
left sides to remove the PCR primer. Based on the quality plot, reads were truncated from
the right sides to remove the low-quality end. Paired-end reads were kept in enough length
to allow paired-end joining. DADAZ2 method was used to quality control, join paired-end

11
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http://easymap.cgm.ntu.edu.tw/

reads and denoise reads into ASVs. Taxonomy of each ASV was assigned by the
classifiers training with the specific sequencing regions based on Silva database. ASV
tables from different datasets were merged by assigned taxon of ASVs. The relative
abundance data was obtained by the Total-Sum scaling (TSS) applying to the absolute
abundance ASV table. The appearance data were transformed from the abundance data

by denoted the observed ASVs in kth sample as 1 and unobserved ASVs as 0.

After data preprocessing, samples from different datasets were merged into three
tables. One was the sample metadata, which contained sample identifiers, sample labels
and study indices. Another table was ASV table with abundance data, which contained
sample identifiers, ASVs and their assigned taxon and abundance for each sample in each
ASV. The other table was ASV table with appearance data, which was the same ASV

table structure but with appearance data.

To study and visualize the difference of gut microbiome composition from different
groups, The ASV table was analyzed by the phyloseq [25] package (version: 1.42.0)
within the Bioconductor R package (version: 3.17). A compositional bar plot was
generated to compare the phylum-level composition across different groups. To visualize
multidimensional data and maximize information display, principal component analysis

(PCA) was conducted, and the first two principal component were plotted.

2.3 Differential abundance analysis and feature selection

After data preprocessing, ASV table contained thousands of ASVs, which most of

them were not useful for CRC screening using RF and MRS models. Therefore,

12
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identification of significant ASVs between groups were crucial for improving the
performance of RF and MRS models. Differential abundance analysis was performed to
identify ASVs that were differently abundant between groups. These significant
biomarker features were served as the input of RF and MRS models. As shown in Figure
2.2, the ANCOM-BC and chi-square test were used to identify the significant biomarkers
from abundance and appearance data. Input features of RF models were determined by

combining the biomarkers identified by ANCOM-BC and chi-square test.

2.3.1 Analysis of Compositions of Microbiomes with Bias Correction

(ANCOM-BC)

There are several different differential abundance analysis methods, such as LefSe
and Wilcoxon test. These methods only use the relative abundance to identify biomarkers.
They do not account for the bias introduced by sampling difference of samples while

sequencing.

ANCOM-BC algorithm is a differential abundance analysis that address the bias
introduced by unequal sampling fractions [26]. Sampling fraction is defined as the
proportion of observed absolute abundance of sample to the unobservable ecosystem.
Samples have different sampling fractions due to the different sequencing depth of
samples. As shown in Table 2.2, the ecosystem A and B is clearly different in absolute
abundance, but the sample A and B show the same because of the different sampling
fraction between sample A and B. Difference of sampling fractions between samples may
cause bias while using observed absolute abundance as the input of differential abundance

analysis. Therefore, ANCOM-BC estimate the bias and reduce the false discovery rate.

13
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Based on the MRS framework and the recent review studies [26, 27], ANCOM-BC
algorithm, as one of the top-performing differential abundance analysis methods, were
recommended to identify the CRC associated ASVs.

Table 2.2: The example of bias introduced by sampling fraction. Samples represent

the observed data defined by the library size of sequencing; Ecosystems represent the
unobserved data defined by the microbial load in the environments.

Sample Ecosystem
A B A B
ASV1 4 4 12 18
ASV2 2 2 6 9
Sum 6 6 18 27

ANCOM-BC algorithm is a log-ratio linear regression based differential

abundance analysis model. First, ANCOM-BC identify ASVs that are systematically

absent in a group as structural zeros:

1 " (1)
Dij = — Zl(oijk #0)
Y=

itASVs (i=1,2,...,m);j:groups (j=1, 2, ..., g); k: samples (k=1, 2, ..., nj);
p: non-zero proportion of the samples; O: observed absolute abundance

If p;; = 0, then the ith ASV is defined as structural zero in the jth group. ASVs

identified as structural zero among all groups are abandoned in the following steps.

14
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Second, ANCOM-BC estimate the sampling fraction between observed data and
unobserved ecosystem. ANCOM-BC assumes the observed absolute abundance data is
proportional to the unobserved abundance data in the real microbial ecosystem (Table

2.2).

Observed relative abundance:

_ Oijie 1)
Unobserved relative abundance:
Ajji 2)
Yijk = Aij'k

O: observed absolute abundance; A: unobserved abundance.

The absolute abundance of a ASV in a random sample is in constant proportion to
the absolute abundance in the ecosystem of the sample. This proportional difference

between observed and unobserved data is defined as sampling fraction.

_ E(Oiji|Aiji) @)
T A
ijk

The log transformed absolute abundance data would approximate to normal

distribution.

15
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Yijk = 10g(0yji)
ui; = log(0;j) (4)

djk = log (Cjk)

6;;: the expected A;; value of ith ASV in the jth group

In the context where a particular taxon is considered, it is assumed that all subjects,
both within and between groups, are independent. In this case, 6;j is regarded as a fixed
parameter rather than a random variable. Suppose there are two groups in the samples and
for the ith ASV, the linear model framework is applied to log-transformed absolute

abundance data. The hypothesis can be expressed as follows:

Yije = ik + Wij + &ijic ®)
Ho : pin = iz

(6)
Hy:pin # pip

The difference in the true sample means between the two groups is:

pin — Hiz = EGin — Vi) —(d1 — dy) (7)

Under the null hypothesis p;; = piz, E(i — Vi) — (dy — d3) # 0, unless
d, = d,. Due to the presence of differential sampling fractions, which are specific to
each sample, the numerator of the standard t-test under the null hypothesis for these
microbiome data is non-zero. For the equation 7, the first two sections u;; — u;» and
E(¥i1 — Vi) should be normal distribution. Therefore, the sampling fraction bias (d; —

d,) can be estimated by the method proposed in the ANCOM-BC methodology. The
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ANCOM-BC algorithm control the false discovery rate and perform great testing power

compared to other differential abundance analysis method [26].

The ASV tables containing absolute abundance data were subjected to identify
biomarkers between Control, Adenoma and CRC groups using the ANCOM-BC package
(version: 2.0.3) implemented in Bioconductor R package (version: 3.17). The abundance
data were analyzed by the global test of ANCOM-BC across the control, adenoma and
CRC groups. The log fold change of the identified significant ASVs were compared

between control and CRC groups.

2.3.2 Feature selection

In many studies, features for model input were commonly selected by differential
abundance analysis methods, or even by RF model. In this study, combining both
ANCOM-BC and chi-square test, two types of significant biomarkers were selected.
These two methods were selected to identify the biomarkers from abundance and

appearance data.

Two types of biomarkers were selected from abundance or appearance data.
Biomarker selected by ANCOM-BC using abundance data shows significant difference
between groups. Most of the ASVs were low abundant in samples and couldn’t
distinguish the difference between groups while using abundance data. The appearance
data take account for the difference of observed or unobserved rather than high or low
abundance. The appearance data representing the ASVs that observed in samples were
transformed from the abundance data by denoted the observed ASVs in kth sample as 1

and unobserved ASVs as 0. The appearance ratio of the ASVs between Control, Adenoma
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and CRC groups were analyzed by chi square test to identify significant biomarkers that

highly observed in the specific groups of samples.

Finally, these two types of significant biomarkers (p-value < 0.01 in ANCOM-BC

and/or chi-square test) were selected and combined together. The abundance data with

feature selected based on the combined biomarkers were utilized as the input of machine

learning model. The combined biomarkers from two test can address the significance

from two different type of data. The abundance data selected based on biomarkers

identified by ANCOM-BC were utilized as the input of the microbial risk score

calculation (Figure 2.2).

Abundance data

e

Appearance data

-

ANCOM-BC analysis

-

Chi square test

Select biomarkers by p-value

<

<

Select biomarkers by p-value

-

MRS
calculation

Combine two kinds of
biomarkers for ML

Figure 2.2: Feature selection method for abundance and appearance data.

2.4 Machine learning model training and external validation

Machine learning and deep learning are often built for classification using high-

dimensional data. Due to the limitation of sample amount, random forest machine

learning method was built to reduce overfitting and handle the non-linear features.
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Random forest (RF) is a kind of machine learning algorithm. RF ensemble multiple
decision trees that construct by nodes and leaves. Each node represents a test that split the
data into branches, and branches end in each leaf represents a class label. By assembling
the output of all the trees, RF reduces overfitting problem, handles both categorical and
continuous variables and doesn’t affect by non-linear features. Three main
hyperparameters of RF are number of trees, minimum number of samples to split a node,
and the number of features to consider for a split. These hyperparameter may affect model

performance. Therefore, they can be tuned by grid search and cross validation.

The evaluation metrics of the RF models included in this study were accuracy, AUC,
sensitivity and specificity. Accuracy is the ratio of the number of correct predictions with
the number of total samples. AUC is the area under Receiver operating characteristic
(ROC) curve that presents the correlation between true positive rate and false positive
rate of the model predictions. Sensitivity, also called true positive rate or recall, represents
the percentage of positive samples that are correctly predicted as positive. Specificity,
also called true negative rate, is the percentage of negative samples that are correctly
predicted as negative. These four metrics can evaluate the model performance for

classification.

To classify the control, adenoma and CRC groups by the stool microbiome data, the
random forest classification models were construct using the scikit-learn machine
learning package (version: 1.2.2). The input features were selected by ANCOM-BC and
chi-square test (Figure 2.2). For the classification models that had external validation
dataset, the random forest classifiers were training and grid searching for best
hyperparameters with stratified 10-fold cross validation. Due to the unbalanced datasets
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across three groups, each class of the RF models were weighted inversely proportional to
class frequencies in the datasets. The weighted classes could reduce the effect of the
unbalanced datasets. The accuracy, AUC, sensitivity and specificity metrics, which were
widely used for classification models, were used to evaluate the model performance and
select the best classifier. After 10-fold cross validation, the optimized model was
validated by an external validation dataset to avoid overfitting and generally evaluate the
ability of the stool microbiome random forest classifiers across different datasets, such as
technical differences in microbial data generation. For the classification models without

external validation dataset, models were validated by stratified 10-fold cross validation.

2.5 Microbial risk score (MRS)

Microbial risk score (MRS) [28] is aimed at summarizing the disease-specific
microbial profiles into a continuous risk score, which can be employed to assess and
predict diseases susceptibility. MRS framework is inspired by the polygenic risk score
(PRS). In recent years, PRS has gained increasing utility in current genomic researches.
By integrating the cumulative effect from the risk alleles identified by genome-wide
association study (GWAS) into a continuous score, PRS offers a comprehensive and
quantitative measure of genetic risk on a disease. However, one primary distinction
between MRS and PRS arises from the complex ecosystem of the microbiota, which is
driven by interactions among the sub-community of microorganisms or between
microorganisms and human host. Therefore, rather than the weighted sum of the relative

abundance from the microbial sub-community, the community-based MRS applies
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various alpha diversity indexes, which measure the richness and evenness within a single

sample, to the sub-community with microbial biomarkers associated with the disease.

The MRS algorithm includes two major steps: (1) sub-community determination; (2)
risk score calculation and validation. The first step involves the application of differential
abundance analysis, such as ANCOM-BC, ALDEx2 [29] and Maaslin2 [30], on the
discovery cohort to identify the ASVs that associate with disease. ANCOM-BC algorithm
gives each ASVs a significant p value. Next, the inclusion of ASVs in the sub-community
is determined using pruning and thresholding method (P+T method). P+T method prune
the ASVs by the p value threshold. ASVs with p value lower than the threshold were
included. To determine the p value threshold, P+T method systematically evaluates all
possible p value thresholds, ranging from low to high. The lowest p value threshold can
include a least three ASVs and the highest threshold can include all ASVs. For each
possible p value, one MRS model is constructed on the samples in discovery cohort,
which calculated the alpha diversity index (such as Shannon, Simpson and Observed)
using ASVs under the threshold. In the next step of the MRS framework, ROC curves
were built based on all of the MRS models. The optimal MRS model with the highest
Area under ROC curve (AUC) on the discovery cohort is selected. In the second step, the
optimal MRS model is calculated on the discovery cohort and validated by the validation

cohort.

Based on the MRS framework, the global test of ANCOM-BC was used to identify
the significant ASVs across the control, adenoma and CRC groups. The sub-community
of biomarkers that maximized the mean MRS value difference between control and CRC

groups was determined by pruning and thresholding method. The Shannon alpha diversity
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index were used to calculate the MRS value on both discovery and validation cohort. The
statistical significance of average MRS between groups were tested by unpaired two-

tailed Student’s t test.
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Chapter 3. Results

In this study, three datasets from USA containing stool samples and corresponding
16S rRNA gene sequencing data were utilized to investigate the potential of gut
microbiome biomarkers as non-invasive screening tool for CRC and adenoma. The
overall characteristics of all three datasets were listed in Section 3.1. The biomarkers that
significant difference across control, adenoma and CRC groups were identified by
ANCOM-BC and chi-square test. RF models with different classification strategies were
trained and external validation with the identified biomarkers. Finally, the MRS model
for CRC screening was constructed by the sub-community included 7 bacterial genera,

which were selected by ANCOM-BC and P+T method.

3.1 Alterations of gut microbial composition between control,

adenoma and CRC groups

In order to identify potential biomarkers in the gut microbiome for the development
of a stool-based test for colorectal cancer (CRC), three datasets containing stool samples
and corresponding 16S rRNA gene sequencing data were utilized. These datasets
consisted of individuals from the United States of America (USA) and/or Canada,
including patients diagnosed with adenoma, advanced adenoma, CRC, as well as healthy
controls. A comprehensive description of the included datasets can be found in Table 3.1.
To ensure data quality and consistency, all raw sequencing data underwent preprocessing
using the EasyMAP platform. BMI and age were higher in CRC and adenoma groups

compared to control groups
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Table 3.1: Information of the datasets with stool samples included in the study.

Advanced
Control Adenoma CRC
Study adenoma Age BMI
(No.) (No.) (No.)
(No.)
Baxter 60.32 27.18
187 101 124 127
[20] (SD=12.18) (SD=5.63)
Dadkhah 62.12 27.22
237 242 73
[21] (SD=8.74) (SD=5.05)
Zackular 58.66 28.18
30 30 30
[22] (SD=10.67) (SD=5.93)
Total 454 373 197 157

To visualize the gut microbiome data within the three datasets, a comparison across
the control, adenoma, advanced adenoma (AA), and CRC groups was conducted using

principal component analysis (PCA) and the relative abundance composition at the

phylum level.

0.4-

0.2-

groups

Control
* Adenoma
= AA

°
=}

CRC

PC2 (12.6% explained var.)

S
N

-0.4 -0.2 0.0 0.2
PC1 (33.5% explained var.)

Figure 3.1: Principal component analysis of the gut microbiome samples from all
three studies in control, adenoma, advanced adenoma (AA) and CRC groups. The
first two PCs each explained 33.5% and 12.6% of variance.
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Figure 3.2: Stacked phylum level relative abundance bar plot of the gut microbiome
samples from all three studies in control, adenoma, advanced adenoma (AA) and
CRC groups. Y axis: the stacked relative abundance of the four groups.

In the principal component analysis plot, CRC groups showed difference compared
to control and adenoma groups, where CRC groups was slightly separated with control
and adenoma groups in PCA (Figure 3.1). The gut microbiome composition of the four
examined groups in phylum-level was predominantly characterized by the presence of
Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Verrucomicrobia
(Figure 3.2). Of particular interest, the Firmicutes / Bacteroidetes ratio (referred to as the
F/B ratio), determined by the abundance of the first two dominant phyla, was relatively
higher in CRC group in comparison to the other three groups. With these two results, the
gut microbiome data of CRC groups were different with other groups of samples. Besides,

due to the lack of validation dataset, the advanced adenoma group was combined to

adenoma group in the following feature selection, classification models and MRS model.
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3.2 Features selection across control, adenoma and CRC

groups

In order to conduct a more comprehensive analysis of the gut microbiome variations
between the control, adenoma, and CRC groups, the log fold changes of bacterial genera
between the three groups were calculated using the abundance data. As shown in Figure
3.3, Porphyromonas, Collinesela, Fusobacterium, Peptostreptococcus and Parvimonas
exhibited significantly higher abundance in the CRC group compared to both the control
and adenoma groups. Conversely, the abundance of Anaerostipes and Haemophlius was

found to be comparatively lower in the CRC group compared to the other two groups.

fold change
0
I
|
e, |-
O
|

m control vs adenoma control vs CRC

Figure 3.3: Log fold change of the significant bacterial genera among control,
adenoma and CRC groups. Y axis: the log fold change in different comparison.
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Figure 3.4: Proportions of bacterial ge’ne‘“ra c;‘}";nge'i;{ three groups: (A) Lower in
CRC group; (B) Higher in CRC group; (C) Lower in adenoma group. Y axis: the
percentage of the samples within the group that observed the biomarkers.

Additionally, addressing the challenges posed by the relatively low abundance and
sparsity of the ASV table, the appearance ratios of bacterial genera within the three groups
were employed. The ASV table with appearance data showed the difference of observed
or unobserved in samples rather than high or low abundance. The appearance ratio of a
ASV within a specific group was defined as the percentage of the samples within the
group that observed the ASV. Notably, a cluster of bacterial genera exhibited a higher
occurrence in the CRC group, indicating that these bacterial genera were highly observed
in samples from CRC group (Figure 3.4 (A)). Samples with these genera observed were
more likely to be in CRC group. On the contrary, another cluster of bacterial genera
displayed a lower occurrence in the CRC group compared to the other two groups,

suggesting they were highly observed in the normal and adenoma groups. Samples

without these genera observed may indicated to be in CRC group (Figure 3.4 (B)). The
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third groups of genera were lower appeared in adenoma group (Figure 3.4 (C)), showing

that there were still differences between adenoma and other two groups.

The high dimensional and sparse ASV table impeded its direct usage for machine
learning model prediction. Therefore, the method described in Figure 2.2 was employed
to select gut microbiome biomarkers. Specifically, the genus level ASV table underwent
analysis using the global test of ANCOM-BC algorithm and chi-square analysis among
control, adenoma and CRC groups. A significance threshold of p-value < 0.01 was
applied on both of the testing method, resulting in the selection of 109 biomarkers. 10
biomarkers listed in Figure 3.3 were selected by ANCOM-BC and 99 biomarkers were
selected by chi-square test. These biomarkers were subsequently utilized as input features

for the machine learning models.

3.3 Microbial classification models for control, adenoma and

CRC groups

Next, to test the ability for using gut microbiome biomarkers selected in Section 3.2
as CRC stool-based screening tool, random forest classification models with stratified 10-
fold cross-validation (CV) were constructed by pooling the Baxter and Dadkhah datasets
as training data. Zackular dataset was selected to be the hold-out external validation
dataset. The advanced adenoma group was merged with the adenoma group if advanced
adenoma group wasn’t specified in the classification strategies. The 109 differential

biomarkers identified by ANCOM-BC and chi-square test were using as input features.
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Table 3.2: Model performance metrics of random forest classifiers in pairwise
binary classification strategies. Strategies: negative vs positive class; validation method:
10-fold CV and external validation for each strategy; AUC, accuracy, sensitivity,
specificity: the evaluation metrics for models.

Validation e e
Strategy method AUC Accuracy  Sensitivity  Specificity
10-fold cross 0.63 0.59 0.79 0.40
Control vs validation (SD=0.05) (SD=0.04) (SD=0.08) (SD=0.09)
Adenoma
External 0.62 0.55 0.73 0.37
validation
10-fold cross 0.90 0.86 0.38 0.97
Adenomayvs Validation (SD=0.02) (SD=0.05) (SD=0.12) (SD=0.01)
CRC
External 0.84 0.66 0.33 0.98
validation
10-fold cross 0.90 0.85 0.43 0.97
Control vs validation (SD:0.05) (SD:0.04) (SD:0.13) (SDZO.OZ)
CRC
External 0.82 0.67 0.38 0.96
validation

First, the pairwise binary classifications were performed to discover the ability for
distinguishing one group over another. Pairwise classifications helped us to find out the
pair of groups that were distinctively difference across these three groups. When using
the control vs CRC strategy to train and validate the model, the 10-fold CV and external
validation AUC were 0.90 and 0.82 separately. The specificity was relatively high in both
10-fold CV and external validation, which were 0.97 and 0.96. However, the accuracy

performance drops when using external validation. (Table 3.2)

The model performance of adenoma vs CRC strategy showed similar result compare

with control vs CRC strategy, with AUC 0.90 and 0.84 in 10-fold CV and external

29

doi:10.6342/NTU202303093



validation. Nevertheless, the model performance of control vs adenoma strategy showed
poor prediction power compare to the other two strategies, with AUC only 0.63 and 0.62
in 10-fold CV and external validation (Table 3.2). This result may cause by the lack of
distinction between control and adenoma groups in gut microbiome composition (Figure

3.2) and appearance proportions of the existed bacterial genera (Figure 3.4).

Adenoma might slowly progress to CRC. Therefore, CRC incidence can be
significantly prevented by early detection of adenoma. Early detection of adenoma offers
an opportunity for further treatments to prevent the adenoma progression to CRC. For an
early detection tool, it is crucial to discover the patients with disease or with higher risk
to get disease. The early detection tool with higher sensitivity can identify most of the
disease group. The Control vs Adenoma + CRC strategy was trying to detect both
adenoma and CRC for early detection of the disease group. The samples in CRC group
represented patients that already had cancer, and the samples in adenoma group
represented patients that had higher risk to gradually get cancer. Though AUC and
accuracy were not as good as the other strategies, this strategy showed higher sensitivity,
0.87 and 0.97, in 10-fold cross validation and external validation (Table 3.3). Higher
sensitivity represents more patient can be correctly identified, which is important for early
detection screening methods. Patients that are identified as adenoma + CRC group can
perform further investigation, such as colonoscopy, to verify whether the patients are

adenoma or CRC.
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Table 3.3: Model performance metrics of random forest classifier in Control vs
Adenoma + CRC binary classification strategies.

Validation L e .
Strategy method AUC Accuracy Sensitivity Specificity
c I 10-fold cross 0.71 0.66 0.87 0.36
ontrolvs — \alidation  (SD=0.05) (SD=0.03) (SD=0.03) (SD=0.06)
Adenoma + Ext |
CRC xterna 0.80 0.72 0.97 0.21
validation

3.4 Microbial risk score for CRC

MRS is a continuous risk score that summarizing the disease-specific microbial
profiles. The MRS workflow was conducted in this study to provide a more directly way

to assess the risk of patient to get CRC.

To compute the MRS score among control, adenoma and CRC group, the Baxter and
Zackular datasets containing both three groups of the samples were included as discovery
and validation cohort. Following the MRS workflow, the genus level ASV table with
absolute abundance was analyzed by ANCOM-BC algorithm to identify the significant
bacterial genera. Then, the sub-community for MRS calculation was determined by P+T
method. Specifically, the p-value threshold was determined by the sub-community that
maximize the mean difference of the MRS value between control and CRC groups. With
p-value threshold < 0.01, 7 bacterial genera were included to calculate the MRS score.
The MRS values were computed based on Shannon index. The abundance of the 7

included genera, Porphyromonas, Peptostreptococcus, Parvimonas, Fusobacterium,
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Haemophilus, Atopobium and Collinsella, showed significantly different between groups

(Figure 3.3).

The mean and standard deviation of the MRS score among control, adenoma and
CRC groups in Baxter and Zackular datasets were listed in Table 3.4. Figure 3.5 showed
the means and the 95% confidence inetrvals (Cl) of MRS among three groups. The
differences of means between groups were tested by Student’s t test. In Baxter dataset,
the average MRS score of the CRC group was significantly higher than the control group
(p = 2.1 x 10'?) and the adenoma (p = 6.9 x 107") group, and the average MRS score of
the adenoma group was significantly higher than the control group (p = 0.0046). In
Zackular dataset, the average MRS score of CRC group was also significantly higher than
the adenoma group (p = 0.021). The tests results showed that the means of MRS were
different between groups. The means of MRS were increased from control, adenoma to
CRC groups, indicated that samples with higher MRS score were related to higher risk of
being in the CRC group in these two USA/Canada datasets.

Table 3.4: Mean and standard deviation of the MRS score across control, adenoma
and CRC groups in discovery and validation cohort. SE: standard error

Study Control Adenoma CRC
Baxter 0.22 0.34 0.62
(discovery) (SE=0.025) (SE=0.029) (SE=0.053)
Zackular 0.40 0.27 0.56
(validation) (SE=0.10) (SE=0.069) (SE=0.10)
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Figure 3.5: Average and 95% CI of the MRS score across control, adenoma and
CRC groups in discovery and validation datasets. Y axis: MRS score; X axis: three
groups of samples in two datasets; error bar: 95% CI; *: p < 0.05, **: p < 0.01, ***: p <
0.001 (Student’s t test).
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Chapter 4. Discussion and conclusions

Two kinds of models were built in this study. The results of the random forest model
for pairwise and early detection classification showed the potential to classify CRC and
adenoma groups using stool based gut microbiome data. In addition, MRS framework
was applied in this study. MRS score based on significant biomarkers can give each
patients a score that indicate the risk of getting CRC. In our MRS model, only 7
biomarkers were needed in the sub-community to calculate the MRS score, which could

be an efficient and low-cost tool for CRC risk evaluation.

In this study, stool-based gut microbiome data from published datasets were
processed and compared the difference between control, adenoma and CRC groups. Then,
the genus-level biomarkers were identified from abundance and appearance data by
combining ANCOM-BC and chi-square test result. These biomarkers were served as the
input of RF classification models. Models had great AUC for control vs CRC and
adenoma vs CRC strategies with pairwise classification. The early detection strategy,
control vs adenoma + CRC, showed great sensitivity that recall most of the patients.
Another screening strategy that took account for the advanced adenoma, showed

comparable result for sensitivity and specificity with other stool-based screening test.

Most of the included datasets sequenced the V4 or V3-V4 regions of the 16S rRNA
gene. Only the Dadkhah dataset sequenced the VV1-V3 regions. The difference of the
sequencing region might affect the results of the ASV taxonomy assignment. Different
data preprocessing method is needed to deal with data in different sequencing regions.
Therefore, when performing the taxonomy assignment, the specific taxonomy classifiers
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were trained based on the targeted V1-V3, V3-V4 or V4 region by Silva database to
precisely assign the taxonomy in the datasets with different sequencing regions. Then,

different datasets were merged by the assigned taxon to proceed the further analysis.

The two dominant bacterial phyla in human gut are Firmicutes and Bacteroidetes.
Therefore, the difference of Firmicutes / Bacteroidetes ratio infer to a huge alteration of
bacterial community in gut microbiome. Lots of studies have reported that F/B ratio is
related to Obesity [31], Type | diabetes [32] and other diseases. The result of previous
studies show that the F/B ratio of the CRC stool samples are higher compared to normal
samples [33, 34]. Consistent with previous studies investigating the relationship between
CRC and the gut microbiome, our study also indicate that the Firmicutes / Bacteroidetes
(F/B) ratio is relatively higher in the CRC group compared to the healthy control group.
This observation aligns with the growing evidence suggesting a potential association

between an altered F/B ratio and the development or progression of CRC.

In this study, differential abundance analysis was conducted using the ANCOM-BC
algorithm. ANCOM-BC correct the bias introduced by sampling fractions. Different
sampling fractions for each sample may cause the observed abundance not representing
the real abundance of the unobserved ecosystem. By correcting the sampling fractions,
ANCOM-BC control the false discovery rate and perform great testing power. Other
differential abundance analysis method, such as ALDEx2 and LefSe are also widely
used in microbiome studies. 109 biomarkers on the genus-level, including
Porphyromonas, Fusobacterium, Peptostreptococcus and Parvimonas, were identified
among control, adenoma and CRC groups by the biomarkers selection method (Figure

2.2) using the global test of ANCOM-BC and chi-square testing. A group of bacterial
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species, such as Parvimonas micra [35], Fusobacterium nucleatum [36],
Porphyromonas gingivalis [37] and Peptostreptococcus stomatis [37], are widely
reported to be associated with development and prognosis of CRC. Despite the
limitation and resolution of 16S rRNA gene sequencing, Porphyromonas,
Fusobacterium, Peptostreptococcus and Parvimonas were also identified in genus-level,

which showed similar result with other studies.

There are many types of classification model structure, such as multilayer perceptron
(MLP), convolution neuron network (CNN), random forest and support vector machine.
We had attempted the deep learning structure, including MLP and CNN, but the AUC
performance for control vs CRC strategy were around 0.83, which were lower than the
performance of random forest. The reason may be the number of samples were not

enough for training a deep learning model.

Among the model performance of the RF in pairwise binary classification, control
vs CRC and adenoma vs CRC strategies had the best performance, both had 0.90 in
AUC. These results were also higher than other related studies [38, 39], which perform
AUC 0.80 and 0.89 in control vs CRC and adenoma vs CRC. Though loss in other
evaluation metrics, control vs adenoma strategy still had slightly better sensitivity
compared to the other two strategies. Due to similar between control and adenoma
groups, while CRC screening, the control vs CRC strategy can be used specific to
classify the CRC groups against the other two groups. The sensitivity and the specificity
showed different pattern in different model classification strategies. These result might
cause by the unbalanced datasets. Though the class weight were balanced by the

inversely proportion of class frequencies while model training, the unbalanced dataset

36

doi:10.6342/NTU202303093



still affected the model performance. Down sampling or other methods is needed to

reduce the effect of unbalanced dataset and further improve the model performance.

About the stool-based CRC screening tests, guaiac-based fecal occult blood test
(QFOBT) had largely replaced by Fecal immunochemical test (FIT) due to the
convenience and effectiveness of FIT [40]. However, FIT still can’t perform well on
detecting advanced adenoma (AA). Pooled analysis showed that the sensitivity for
detecting advanced adenoma is about 23% and the specificity is 94% [41]. Our
classification sensitivity for AA + CRC against Control +adenoma was 43% and the
specificity was 94%, which was similar with the pooled analysis result of the FIT
screening test. This result showed the potential of using gut microbiome for advanced
adenoma screening. In fact, PCA analysis (Figure 3.1) showed that the advanced
adenoma and adenoma groups were different, and the advanced adenoma group was
similar with CRC groups. More stool-based gut microbiome datasets with advanced
adenoma are needed to validate the result of this study. The FIT screening test is the most
widely used method for CRC and advanced adenoma screening. Therefore, our model has
the potential to compete with FIT. Furthermore, our model can even combine with FIT

result to get a better performance for CRC and advanced adenoma screening.

The MRS framework applied on the Baxter dataset as discovery cohort. The ASVs
were pruned using the p value calculated by ANCOM-BC. The sub-community that
maximized the average difference of the MRS score between control and CRC groups in
discovery cohort. Based on this method, 7 biomarkers were included into the sub-
community. The MRS model applied on the Baxter dataset showed significantly

increasing MRS score across control, adenoma and CRC group, indicated the ability of
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CRC screening using MRS score. Validation on the Zackular dataset showed similar
result. The average MRS score of the CRC group was significantly higher than adenoma
group in the Zackular datset. Nevertheless, the average MRS score of the adenoma group
in Zackular dataset was slightly lower than the adenoma group in Baxter dataset. It might
due to the slightly difference in gut microbiome for the adenoma groups between
discovery dataset, with both adenoma and advanced adenoma, and validation dataset,
without advanced adenoma. Using different alpha diversity index had similar result

compared with Shannon index.

To find the potential MRS thresholds for CRC screening, the MRS score of control
and CRC groups were considered. As shown in Figure 4.1, the MRS score in 70% of
samples in control groups were highly accumulate between 0 to 0.25, while only about
40% of the samples in CRC groups were lower than 0.25. Based on the percentiles of two
groups (Table 4.1 and Figure 4.1), the potential MRS thrseholds could be set to 0.12 and
0.21, which was the 60 percentile of control group and 40 percentile of CRC group.
Samples with MRS score under 0.12, which was lower than the 35 percentile of CRC
group, were considered as safe group. Samples with MRS score above 0.21, which neared
the 70 percentile of control group, were considered as danger group. Samples with MRS

score between 0.12 and 0.21 were considered as warning group.
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Figure 4.1: Percentiles of the pooled MRS score in control and CRC groups. X axis:
MRS score; red bar: the percentiles of MRS score.

Table 4.1: Mean and percentiles of the pooled MRS score in control and CRC groups.
SE: standard error

Percentiles
30 35 40 45 50 55 60 65 70 75

Groups Mean

0.25

Control (SE=0.025) 0 0 0 0 0 0.085 0.071 0.12 0.19 025 0.37
CRC 061 0.039 0.066 0.14 0.21 034 042 062 074 090 097 10
(SE=0.046) ' ' ' ' ' ' ' ' ' '

Other than the dataset from USA or Canada, studies from different regions may

affect the application of the MRS model for CRC screening. Therefore, Yang and Cong
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datasets from China (detail information listed in Table 2.1) were processed and calculated
the MRS score to evaluate the MRS model. Using the same sub-community of 7
biomarkers identified in Baxter discovery cohort, the average MRS score of the two China
datasets were higher compared to Baxter and Zackular datasets in both control and CRC
groups. Nevertheless, compared between control and CRC groups from the two China
datasets, the average MRS score also significantly increased from control to CRC groups
(Figure 4.2 and Table 4.3), with p = 3.4 x 10 in Yang dataset and p = 0.0017 in Cong
dataset separately. This result showed the similar pattern with two USA/Canada datasets,
which indicated the potential cross-regional application of the proposed MRS model.

Table 4.2: Information of the external validation datasets in China with stool
samples

Study Control (No.) CRC (No.) Published year
Yang [23] 50 50 2019
Cong [24] 11 10 2018

Table 4.3: Mean and standard deviation of the MRS score in China datasets. SE:
standard error

Study Control CRC

Yang 0.70 1.23
(SE=0.074) (SE=0.075)

Cong 0.51 1.45

(SE=0.12) (SE=0.23)
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Figure 4.2: Average and 95% CI of the MRS score in China datasets. Y axis: MRS
score; X axis: control and CRC groups in two china datasets; error bar: 95% CI. **: p <
0.01, ***: p < 0.001 (Student’s t test).

To further enhance future research in this study, several aspects could be improved.
First, considering the limitations of 16S rRNA gene sequencing data, future research
could explore the utilization of more advanced techniques such as shotgun whole genome
sequencing (WGS) or 16S rRNA full-length sequencing. These methods offer higher
resolution in taxonomy assignment. Besides, WGS also provide additional functional
predictions [42]. By incorporating these sequencing approaches, the increased resolution
and additional information can potentially improve the accuracy of classification models
used in the study and gain more understanding of the gut microbiome composition and
its potential function in relation to CRC. Another aspect that can contribute to the

improvement of future research is the inclusion of more gut microbiome datasets,

specifically those including samples from patients with advanced adenoma. By expanding
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the available datasets, the performance the random forest classifier can be enhanced by
training and external validation for advanced adenoma classification. The MRS model
can also improve to classify different groups of samples, like adenoma or advanced
adenoma. The gut microbiome between the adenoma and advanced adenoma (AA) groups
showed difference in PCA and phylum-level gut microbiome composition. The advanced
adenoma group was even more similar with CRC group in PCA analysis. More datasets
containing AA samples is needed to improve the performance of RF models classifying
AA groups and construct the MRS models for AA screening. As a continuous score, MRS
models can be integrated with other types of data, such as multi-omics data or ages, which

can hopefully improve the performance of MRS score.
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