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摘要 

大腸直腸癌（簡稱大腸癌）在美國與台灣皆是第三大診斷癌症。通過大腸癌篩

檢和診斷可以找出高風險的患者並且大幅降低大腸癌的長期風險。許多研究已經

表明大腸癌與腸道微生物菌相之間存在許多關聯。利用機器學習模型來檢測潛在

患者的腸道菌相有潛力比傳統的大便篩檢測試更早地檢測到大腸癌。在這篇研究

當中，我們構建了一個新的機器學習流程，使用微生物菌相數據來識別大腸癌、大

腸腺瘤和健康組別，並評估每個人的大腸癌風險分數。從 SRA 數據庫或其他研究

中提供的數據中收集了具有 16S rRNA 定序數據的糞便樣本。根據 ANCOM-BC 演算

法和卡方檢定，共識別出 109個與大腸癌相關的菌屬。使用 10組交叉驗證對隨機

森林分類器進行訓練並且通過外部驗證資料評估模型的分類表現。結果顯示，在區

分對照組和大腸癌組方面，隨機森林模型具有優異的分類性能，在 10組交叉驗證

中有 90％的 AUC 並在外部驗證中有 82％的 AUC。在通過分類對照組對比腺瘤加大

腸癌組以達到大腸腺瘤早期篩檢的策略中，隨機森林模型在 10組交叉驗證中表現

出 87％的靈敏度，在外部驗證中表現出 97％的靈敏度。最後使用 ANCOM-BC 演算

法找出的 7個生物標記菌屬被用來計算微生物風險得分 (MRS），可以被用來作為

大腸癌的風險指標。總而言之，我們開發了一種使用 16S rRNA腸道微生物菌相數

據的 CRC 分類新流程，並識別出了特定於大腸癌的腸道微生物菌屬。該流程和生

物標記菌屬可以作為早期檢測 CRC的非侵入性工具使用。 

關鍵字：大腸直腸癌、腸道菌相、機器學習、微生物風險得分、糞便早期篩檢 
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Abstract 

Colorectal cancer (CRC) is the third leading diagnosed cancer and cause of cancer 

death in the United State and Taiwan. The long-term risk of CRC can be managed through 

the identification of high-risk patients by CRC screening and diagnosis. Many studies 

have shown the associations between CRC and gut microbiome. The machine learning 

models have the potential to detect CRC earlier than the conventional stool screening test. 

We constructed a novel machine learning pipeline to identify CRC, colorectal adenoma, 

and healthy groups, and evaluated the risk of CRC for each person using microbiome data. 

Stool samples with16S rRNA sequence data were collected from the NCBI SRA database 

or supplementary data provided in studies. In total, 109 CRC-associated genera were 

identified based on ANCOM-BC algorithm and chi-square test. Random forest (RF) 

classifiers were training with 10-fold cross validation (CV). Model performance was 

evaluated by the external validation. Our results showed that the RF model illustrated 

excellent performance with 90% AUC for 10-fold CV and 82% AUC for external 

validation in classifying control vs CRC groups. RF model performed well with 87% 

sensitivity for 10-fold CV and 97% sensitivity for external validation in early detection 

strategy by classifying control vs adenoma plus CRC groups. Finally, 7 biomarkers 

identified by ANCOM-BC algorithm were utilized to calculate a microbial risk score 

(MRS), which could be regarded as an index the possibility of CRC. In summary, we 

developed a new pipeline for CRC classification using 16s rRNA gut microbiome data 

and identified CRC-specific gut microbiome genera. The pipeline and biomarkers could 

be used as a non-invasive tool for the early detection of CRC. 

Key word: CRC, Gut microbiome, Machine learning, MRS, Stool-based screening 
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Chapter 1. Introduction 

1.1 Colorectal cancer 

Colorectal cancer (CRC) is a disease characterized by uncontrolled proliferation of 

abnormal cells specifically affecting the colon or rectum [1]. CRC is the third leading 

diagnosed cancer and cause of cancer death in the United State [2] and Taiwan [3]. A 

substantial portion of CRC cases and fatalities can be attributed to modifiable risk factors 

such as smoking, an unhealthy diet, excessive alcohol consumption, physical inactivity, 

and obesity [4].  

The majority of CRCs originate from noncancerous growths known as polyps, which 

develop in the inner lining of the colon or rectum [1]. One type of polyps called adenomas 

are recognized as precursors of CRC [5]. Adenomas may slowly progress to CRC over 

time by growing through the mucosa and invading blood or lymph vessels. Having higher 

risk of developing CRC, advanced adenomas is a kind of adenoma defined as an adenoma 

greater than 1 cm, more than three adenomas of any size, or an adenoma with villous 

histology [6]. Patients with advanced adenomas are more likely to be diagnosed with CRC. 

Because of the slowly progression from adenoma to CRC, a significant proportion 

of CRC incidence can be prevented through the adoption of regular screening practices 

and surveillance [6]. Visual examination and stool-based test are two major methods for 

current CRC screening strategies. Visual examinations, including colonoscopy and 

flexible sigmoidoscopy, have the best performance for CRC screening. However, visual 

examinations require bowel cleaning and invasive surgery. Stool-based tests, such as 
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guaiac-based fecal occult blood test (gFOBT) and Fecal immunochemical test (FIT), are 

low cost and non-invasive but with low sensitivity for adenoma and advanced adenoma. 

Both of the screening methods have their advantages and limitation. 

1.2 Colorectal cancer and gut microbiome 

The Gut microbiome is a large population of microorganisms that lives in the host 

digest system and involves in the host nutrition, metabolism, and immunity. Dysbiosis of 

the human gut microbiome plays a significant role in the development of CRC through 

several different mechanisms. First, microorganisms such as F. nucleatum can induce cell 

inflammation and activate signaling pathway to promote tumor development on intestinal 

epithelial cell. Second, microbial metabolisms produce metabolites from dietary and host 

compounds. Secondary bile acids and short chain fatty acids (SCFA) are highly correlated 

to gut microbiome and diets. These metabolites can influence the risk and formation of 

tumor. Third, toxins such as Cytolethal distending toxin (CDT) and colibactin produced 

by gut microbiome can cause DNA damaging effects. These genotoxin can induce double 

strand DNA degrade and cause genomic instability [7].  

Wong and Yu [8] indicated that the two major potential clinical applications in CRC 

are detecting the screening/prognostic biomarkers and modulation for CRC 

treatment/prevention. Due to the limitation of current fecal immunochemical test, the 

stool-based gut microbial genes and metabolites have the potential to be the non-invasive 

screening or prognostic biomarkers for adenoma, advanced adenoma and CRC. Besides, 

modulating the gut microbiome can reduce the adverse effects and mediate the anticancer 

effects of immunotherapy and chemotherapy. Using dietary intervention, gut microbial 
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probiotics, prebiotics, fecal microbiota transplantation (FMT) and other methods, gut 

microbiome can be modulated to prevent CRC or improve treatment response of CRC. 

The findings from several studies have presented an opportunity to apply gut microbiome 

discoveries into practical applications that can significantly reduce the incidence and 

mortality rates of CRC.  

1.3 Prokaryotic 16S rRNA gene sequencing 

The prokaryotic 16S rRNA gene is about 1500 bp long, encoding the small subunit 

ribosomal RNA fragment of prokaryotic ribosomes. The structure of 16S rRNA gene 

includes highly conserved gene regions and nine hypervariable regions, called V1 ~ V9 

regions. The highly conserved regions allow universal primer binding across different 

bacteria and archaea, and the hypervariable regions can be used to classify taxon and 

explore the taxonomic composition of microbiome, as shown in Figure 1.1 [9]. The most 

commonly used combination of hypervariable regions for 16S rRNA sequencing are V1 

~ V2/V3, V3 ~ V4 and V4 regions [9].  

Figure 1.1: The structure of prokaryotic 16S rRNA gene and different primer pairs 

to sequence hypervariable regions [9]. 

The 16S rRNA sequencing and analysis pipeline start with sample preparation. Stool, 

tissue, soil or water samples can be collected and preprocessed to extract the 

environmental DNA. Polymerase chain reaction (PCR) is used to amplify these DNA 
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samples. After sequencing these amplicons, the sequencing machine can generate fastq 

file containing sequencing reads of nucleotides and quality for each base pairs. 

Based on the amplicon sequencing data analysis pipeline of Quantitative Insights 

Into Microbial Ecology 2 (QIIME 2) [10] (Figure 1.2 [10]), the first step is to demultiplex 

raw sequencing reads in the fastq file by detecting the barcodes and mapping them back 

to their samples. Next, the denoising and clustering step uses denoising methods such as 

DADA2 [11] to remove low quality and chimeric reads based on quality scores, correct 

amplicon sequencing errors in reads and join denoised paired-end reads. After denoising 

and clustering, Amplicon sequence variant (ASV) feature table and representative reads 

for each ASV are generated. The ASV feature table contains sequence counts for each 

ASV in samples, which is called absolute abundance. Relative abundance is calculated 

by applying total-sum scaling (TSS) to absolute abundance. The representative reads are 

selected from each ASV to reduce the number of reads in further analysis steps. To 

identify the potential organisms each ASV represented, Taxonomy is assigned to each 

ASV by comparing the representative read of ASV to a 16S rRNA reference database, 

like SILVA [12] and Greengenes [13].Finally, the ASV table and taxonomy assignment 

result can be applied to several different analyses, such as diversity analysis and 

differential abundance analysis. Diversity analysis includes alpha- and beta-diversity 

analyses. Shannon, Simpson and observed index are common alpha-diversity indices to 

measure the richness and evenness of ASV in each sample. Beta diversity like Bray-curtis 

and unifrac compare the similarity or dissimilarity between two samples. Differential 

abundance analysis, such as Linear Discriminant Analysis Effect Size (LefSe) [14] or 

Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) [15], 
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identify significant ASVs which are higher or lower abundant between two group of 

samples.  

Figure 1.2: QIIME2 amplicon sequencing data analysis pipeline [10]. 

1.4 Easy Microbiome Analysis Platform (EasyMAP) 

Easy Microbiome Analysis Platform (EasyMAP) [16] is an online platform for 16S 

rRNA gene sequencing data analysis. The analysis pipeline of EasyMAP is based on 

QIIME2 pipeline described in Section 1.3. In brief, the raw reads in the sequence files 

are demultiplex into the samples based on the sample metadata uploaded by user. The 

DADA2 algorithm is conducted for quality control and denoising. The taxonomy 

classifiers are used to do the taxonomy assignment. Pretrained V3-V4 and V4 classifiers 

on Greengenes and Silva are provided. Classifiers for specific regions can also be trained 

based on the primer set provided by user. For data visualization and analysis, alpha 

diversity plots, beta diversity plots, bar plots and heatmaps are provided in EasyMAP. To 
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further use the ASV table and taxonomy assignment result from the QIIME2 pipeline, 

EasyMAP also integrates LefSe and PICRUSt [17] analysis modules for microbiome 

differential abundance analysis and functional composition prediction.  

The advantages of the EasyMAP against QIIME2, Mothur [18] or other analysis 

tools are online platform, easy file management, user-friendly interface, and step-by-step 

guidance. EasyMAP analysis is conducted on an online web server, eliminating the need 

for users to prepare their own computing resource. User can manage their file and output 

results on the EasyMAP web page, intead of a command line interface Linux server. The 

user-friendly interface and step-by-step guidance provided by EasyMAP enable users 

with limited bioinformatics knowledge to navigate through the analysis conveniently. 

Users with limited bioinformatics knowledge can follow the instruction on the EasyMAP 

web page and the tutorial to complete the whole pipeline. Therefore, EasyMAP is a user-

friendly tool specifically designed for conducting comprehensive analysis of 16S rRNA 

sequencing data. 

1.5 Motivation 

The motivation of this study is the potential clinical applications of the gut 

microbiome. The gut microbiome had proven to affect various human disease and cancer 

by affect disease progression and prognosis, and had the potential to act as the screening 

biomarker for disease prevention or the probiotics for disease treatment, including 

colorectal cancer. Colorectal cancer (CRC) ranks as the third most commonly diagnosed 

cancer and significantly contribute to cancer-related death in both the United States and 

Taiwan. Despite its impact, the long-term risk of CRC can be effectively managed 
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through the identification of high-risk patients and underwent CRC screening and 

diagnosis, followed by regular colonoscopy surveillance [19]. Colonoscopy surveillance 

is the most precise way to identify both adenoma, advanced adenoma and CRC, but it is 

expensive, non-convenient and invasive. The stool-based CRC screening tools, such as 

FIT and gFOBT, are low-cost and non-invasive, but they have low sensitivity to adenoma 

and advanced adenoma and may produce false-positive test results. Therefore, this study 

is aimed at develop classification methods based on stool microbiome data for non-

invasive CRC screening test in early detection. Additionally, a scoring model is also built 

to indicate the risk of getting CRC for patients. Patients with higher score may have higher 

risk of getting CRC, and can get further surveillance by colonoscopy.  
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Chapter 2. Materials and methods 

This study is consisted of two parts. The first part is to construct of classification 

model, which could be used as a screening model for CRC prevention using gut 

microbiome data. The second part is to establish a scoring model, which could give a 

score to potential CRC patients that indicate the risk for getting CRC. The flow chart of 

this study is in Figure 2.1. Stool samples with 16S rRNA gene sequencing data were 

collected from published studies (Section 2.1). 16S rRNA gene sequencing data were 

downloaded from NCBI SRA database and preprocess by EasyMAP pipeline. The ASV 

tables generated after preprocessing were merged and convert to abundance and 

appearance data (Section 2.2). Biomarker selection method was based on ANCOM-BC 

and chi-square test introduced in Section 2.3 and Figure 2.2. Identified biomarker 

features were served as the models input of random forest (RF) machine learning model 

and microbial risk score (MRS) model for adenoma and CRC. The training and validation 

method of the RF model was described in Section 2.4. The MRS model for adenoma and 

CRC was constructed based on MRS framework described in Section 2.5. 
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Figure 2.1: The workflow overview of the data preprocessing and model training. 

2.1 Published datasets collection 

Published studies sequencing stool-based 16S rRNA sequencing data from patients 

with CRC, advanced adenoma (AA), adenoma and healthy controls prior to treatment or 

colonoscopy were included in this study. Patients were diagnosed by colonoscopy. 

Patients without adenoma or CRC were included for healthy controls. Metadata that 

provide labels and information of the samples were collected from National Center for 

Biotechnology Information (NCBI) Sequence Read Archive (SRA) database or 

supplementary data provided by datasets. 16S rRNA gene sequencing fastq files of 

samples in the datasets with data uploaded to NCBI SRA database were accessed and 

downloaded using SRA access code of each dataset and fasterq-dump tool in SRA toolkit. 

In the datasets providing 16S rRNA gene sequencing data in supplementary data, fastq 

files of samples were directly downloaded. Comma-separated values (CSV) ASV tables 
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of samples in the datasets providing ASV tables were directly downloaded from 

supplementary data. Samples were excluded if metadata were missing.  

There were five datasets collected in this study. Reducing the effect of different 

country on gut microbiome, the RF and MRS models were constructed by the datasets 

from USA. In Baxter dataset, patients were inclued in four cities in USA/Canada, able to 

collect 58 mL of blood and a stool sample. In Dadkhah dataset, patients were included 

for clinical trial from January 2014 and June 2015. In Zackular dataset, patients were 

included in four cities in USA/Canada, able to collect 58 ml of blood two times and 

complete an gFOBT kit. In Yang dataset, patients were included by colonoscopy 

examination at Tongji University Affiliated Tenth People's Hospital from January 2014 

to September 2014. In Cong dataset, patients were included from the affiliated hospital 

of Qingdao University.  

For the RF models, Baxter and Dadkhah datasets were selected to train the models 

with different classification strategies. For the MRS model, the Baxter dataset was the 

discovery cohort to classify the control and CRC groups. The RF and MRS models were 

external validated by the Zackular dataset. 
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Table 2.1: The study design of the published datasets. 

Study Data storage Country 
Sequencing 

region 

Baxter 

[20] 
SRA USA/Canada V4 

Dadkhah 

[21] 
SRA USA V1-V3 

Zackular 

[22] 

Fastq files in 

supplementary 
USA/Canada V4 

Yang 

[23] 

ASV table in 

supplementary 
China V3-V4 

Cong 

[24] 
SRA China V3-V4 

2.2 Data preprocessing 

Fastq files of 16S rRNA sequencing data contained raw reads and their sequencing 

quality score. Raw reads were mixed with reads from different samples, had uneven 

quality and lacked of taxonomy assignment. Therefore, data preprocessing for 16S rRNA 

sequencing data was needed to reveal the gut microbiome information contained in raw 

reads data. 

Raw sequence data were uploaded to EasyMAP website 

(http://easymap.cgm.ntu.edu.tw/) and processed by EasyMAP pipeline (Figure 1.2). Raw 

sequencing reads were demultiplexed to their belonging samples and trimmed from the 

left sides to remove the PCR primer. Based on the quality plot, reads were truncated from 

the right sides to remove the low-quality end. Paired-end reads were kept in enough length 

to allow paired-end joining. DADA2 method was used to quality control, join paired-end 

http://easymap.cgm.ntu.edu.tw/
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reads and denoise reads into ASVs. Taxonomy of each ASV was assigned by the 

classifiers training with the specific sequencing regions based on Silva database. ASV 

tables from different datasets were merged by assigned taxon of ASVs. The relative 

abundance data was obtained by the Total-Sum scaling (TSS) applying to the absolute 

abundance ASV table. The appearance data were transformed from the abundance data 

by denoted the observed ASVs in kth sample as 1 and unobserved ASVs as 0.  

After data preprocessing, samples from different datasets were merged into three 

tables. One was the sample metadata, which contained sample identifiers, sample labels 

and study indices. Another table was ASV table with abundance data, which contained 

sample identifiers, ASVs and their assigned taxon and abundance for each sample in each 

ASV. The other table was ASV table with appearance data, which was the same ASV 

table structure but with appearance data. 

To study and visualize the difference of gut microbiome composition from different 

groups, The ASV table was analyzed by the phyloseq [25] package (version: 1.42.0) 

within the Bioconductor R package (version: 3.17). A compositional bar plot was 

generated to compare the phylum-level composition across different groups. To visualize 

multidimensional data and maximize information display, principal component analysis 

(PCA) was conducted, and the first two principal component were plotted.  

2.3 Differential abundance analysis and feature selection  

 After data preprocessing, ASV table contained thousands of ASVs, which most of 

them were not useful for CRC screening using RF and MRS models. Therefore, 
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identification of significant ASVs between groups were crucial for improving the 

performance of RF and MRS models. Differential abundance analysis was performed to 

identify ASVs that were differently abundant between groups. These significant 

biomarker features were served as the input of RF and MRS models. As shown in Figure 

2.2, the ANCOM-BC and chi-square test were used to identify the significant biomarkers 

from abundance and appearance data. Input features of RF models were determined by 

combining the biomarkers identified by ANCOM-BC and chi-square test.  

2.3.1 Analysis of Compositions of Microbiomes with Bias Correction 

(ANCOM-BC) 

There are several different differential abundance analysis methods, such as LefSe 

and Wilcoxon test. These methods only use the relative abundance to identify biomarkers. 

They do not account for the bias introduced by sampling difference of samples while 

sequencing.  

ANCOM-BC algorithm is a differential abundance analysis that address the bias 

introduced by unequal sampling fractions [26]. Sampling fraction is defined as the 

proportion of observed absolute abundance of sample to the unobservable ecosystem. 

Samples have different sampling fractions due to the different sequencing depth of 

samples. As shown in Table 2.2, the ecosystem A and B is clearly different in absolute 

abundance, but the sample A and B show the same because of the different sampling 

fraction between sample A and B. Difference of sampling fractions between samples may 

cause bias while using observed absolute abundance as the input of differential abundance 

analysis. Therefore, ANCOM-BC estimate the bias and reduce the false discovery rate. 
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Based on the MRS framework and the recent review studies [26, 27], ANCOM-BC 

algorithm, as one of the top-performing differential abundance analysis methods, were 

recommended to identify the CRC associated ASVs.  

Table 2.2: The example of bias introduced by sampling fraction. Samples represent 

the observed data defined by the library size of sequencing; Ecosystems represent the 

unobserved data defined by the microbial load in the environments. 

 Sample Ecosystem 

 A B A B 

ASV1 4 4 12 18 

ASV2 2 2 6 9 

Sum 6 6 18 27 

ANCOM-BC algorithm is a log-ratio linear regression based differential 

abundance analysis model. First, ANCOM-BC identify ASVs that are systematically 

absent in a group as structural zeros:  

𝑝̂𝑖𝑗 =  
1

𝑛𝑗
 ∑ 𝐼(𝑂𝑖𝑗𝑘  ≠ 0)

𝑛𝑗

𝑘=1

 

(1) 

i: ASVs (i = 1, 2, …, m); j: groups (j = 1, 2, …, g); k: samples (k = 1, 2, …, nj); 

p: non-zero proportion of the samples; O: observed absolute abundance 

If 𝑝̂𝑖𝑗 = 0, then the ith ASV is defined as structural zero in the jth group. ASVs 

identified as structural zero among all groups are abandoned in the following steps. 
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Second, ANCOM-BC estimate the sampling fraction between observed data and 

unobserved ecosystem. ANCOM-BC assumes the observed absolute abundance data is 

proportional to the unobserved abundance data in the real microbial ecosystem (Table 

2.2).  

Observed relative abundance: 

𝑟𝑖𝑗𝑘 =  
𝑂𝑖𝑗𝑘

𝑂∗𝑗𝑘
 

(1) 

Unobserved relative abundance: 

𝛾𝑖𝑗𝑘 =  
𝐴𝑖𝑗𝑘

𝐴∗𝑗𝑘
 

O: observed absolute abundance; A: unobserved abundance. 

(2) 

The absolute abundance of a ASV in a random sample is in constant proportion to 

the absolute abundance in the ecosystem of the sample. This proportional difference 

between observed and unobserved data is defined as sampling fraction. 

𝐶𝑗𝑘 =  
𝐸(𝑂𝑖𝑗𝑘|𝐴𝑖𝑗𝑘)

𝐴𝑖𝑗𝑘
 

(3) 

The log transformed absolute abundance data would approximate to normal 

distribution.  
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𝑦𝑖𝑗𝑘 = 𝑙𝑜𝑔 (𝑂𝑖𝑗𝑘) 

(4) 𝜇𝑖𝑗 = 𝑙𝑜𝑔 (𝜃𝑖𝑗) 

𝑑𝑗𝑘 = 𝑙𝑜𝑔 (𝐶𝑗𝑘) 

𝜃𝑖𝑗: the expected 𝐴𝑖𝑗 value of ith ASV in the jth group 

In the context where a particular taxon is considered, it is assumed that all subjects, 

both within and between groups, are independent. In this case, θij is regarded as a fixed 

parameter rather than a random variable. Suppose there are two groups in the samples and 

for the ith ASV, the linear model framework is applied to log-transformed absolute 

abundance data. The hypothesis can be expressed as follows: 

𝑦𝑖𝑗𝑘 =   𝑑𝑗𝑘 + 𝜇𝑖𝑗 +  𝜀𝑖𝑗𝑘 (5) 

𝐻0 ∶ 𝜇𝑖1 =  𝜇𝑖2 

(6) 

𝐻1 ∶ 𝜇𝑖1 ≠  𝜇𝑖2 

The difference in the true sample means between the two groups is: 

𝜇𝑖1 − 𝜇𝑖2 =  𝐸(𝑦̅𝑖1 − 𝑦̅𝑖2)  − (𝑑̅1 −  𝑑̅2) (7) 

Under the null hypothesis 𝜇𝑖1 =  𝜇𝑖2 , 𝐸(𝑦̅𝑖1 −  𝑦̅𝑖2) − (𝑑̅1 − 𝑑̅2)  ≠ 0 , unless 

𝑑̅1 =  𝑑̅2. Due to the presence of differential sampling fractions, which are specific to 

each sample, the numerator of the standard t-test under the null hypothesis for these 

microbiome data is non-zero. For the equation 7, the first two sections 𝜇𝑖1 −  𝜇𝑖2 and 

𝐸(𝑦̅𝑖1 −  𝑦̅𝑖2) should be normal distribution. Therefore, the sampling fraction bias (𝑑̅1 −

 𝑑̅2) can be estimated by the method proposed in the ANCOM-BC methodology. The 
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ANCOM-BC algorithm control the false discovery rate and perform great testing power 

compared to other differential abundance analysis method [26].  

The ASV tables containing absolute abundance data were subjected to identify 

biomarkers between Control, Adenoma and CRC groups using the ANCOM-BC package 

(version: 2.0.3) implemented in Bioconductor R package (version: 3.17). The abundance 

data were analyzed by the global test of ANCOM-BC across the control, adenoma and 

CRC groups. The log fold change of the identified significant ASVs were compared 

between control and CRC groups. 

2.3.2 Feature selection  

In many studies, features for model input were commonly selected by differential 

abundance analysis methods, or even by RF model. In this study, combining both 

ANCOM-BC and chi-square test, two types of significant biomarkers were selected. 

These two methods were selected to identify the biomarkers from abundance and 

appearance data. 

Two types of biomarkers were selected from abundance or appearance data. 

Biomarker selected by ANCOM-BC using abundance data shows significant difference 

between groups. Most of the ASVs were low abundant in samples and couldn’t 

distinguish the difference between groups while using abundance data. The appearance 

data take account for the difference of observed or unobserved rather than high or low 

abundance. The appearance data representing the ASVs that observed in samples were 

transformed from the abundance data by denoted the observed ASVs in kth sample as 1 

and unobserved ASVs as 0. The appearance ratio of the ASVs between Control, Adenoma 
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and CRC groups were analyzed by chi square test to identify significant biomarkers that 

highly observed in the specific groups of samples.  

Finally, these two types of significant biomarkers (p-value < 0.01 in ANCOM-BC 

and/or chi-square test) were selected and combined together. The abundance data with 

feature selected based on the combined biomarkers were utilized as the input of machine 

learning model. The combined biomarkers from two test can address the significance 

from two different type of data. The abundance data selected based on biomarkers 

identified by ANCOM-BC were utilized as the input of the microbial risk score 

calculation (Figure 2.2).  

 

Figure 2.2: Feature selection method for abundance and appearance data. 

2.4 Machine learning model training and external validation 

Machine learning and deep learning are often built for classification using high-

dimensional data. Due to the limitation of sample amount, random forest machine 

learning method was built to reduce overfitting and handle the non-linear features.  



doi:10.6342/NTU202303093

 

19 

 

Random forest (RF) is a kind of machine learning algorithm. RF ensemble multiple 

decision trees that construct by nodes and leaves. Each node represents a test that split the 

data into branches, and branches end in each leaf represents a class label. By assembling 

the output of all the trees, RF reduces overfitting problem, handles both categorical and 

continuous variables and doesn’t affect by non-linear features. Three main 

hyperparameters of RF are number of trees, minimum number of samples to split a node, 

and the number of features to consider for a split. These hyperparameter may affect model 

performance. Therefore, they can be tuned by grid search and cross validation.  

The evaluation metrics of the RF models included in this study were accuracy, AUC, 

sensitivity and specificity. Accuracy is the ratio of the number of correct predictions with 

the number of total samples. AUC is the area under Receiver operating characteristic 

(ROC) curve that presents the correlation between true positive rate and false positive 

rate of the model predictions. Sensitivity, also called true positive rate or recall, represents 

the percentage of positive samples that are correctly predicted as positive. Specificity, 

also called true negative rate, is the percentage of negative samples that are correctly 

predicted as negative. These four metrics can evaluate the model performance for 

classification. 

To classify the control, adenoma and CRC groups by the stool microbiome data, the 

random forest classification models were construct using the scikit-learn machine 

learning package (version: 1.2.2). The input features were selected by ANCOM-BC and 

chi-square test (Figure 2.2). For the classification models that had external validation 

dataset, the random forest classifiers were training and grid searching for best 

hyperparameters with stratified 10-fold cross validation. Due to the unbalanced datasets 
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across three groups, each class of the RF models were weighted inversely proportional to 

class frequencies in the datasets. The weighted classes could reduce the effect of the 

unbalanced datasets. The accuracy, AUC, sensitivity and specificity metrics, which were 

widely used for classification models, were used to evaluate the model performance and 

select the best classifier. After 10-fold cross validation, the optimized model was 

validated by an external validation dataset to avoid overfitting and generally evaluate the 

ability of the stool microbiome random forest classifiers across different datasets, such as 

technical differences in microbial data generation. For the classification models without 

external validation dataset, models were validated by stratified 10-fold cross validation.  

2.5 Microbial risk score (MRS) 

Microbial risk score (MRS) [28] is aimed at summarizing the disease-specific 

microbial profiles into a continuous risk score, which can be employed to assess and 

predict diseases susceptibility. MRS framework is inspired by the polygenic risk score 

(PRS). In recent years, PRS has gained increasing utility in current genomic researches. 

By integrating the cumulative effect from the risk alleles identified by genome-wide 

association study (GWAS) into a continuous score, PRS offers a comprehensive and 

quantitative measure of genetic risk on a disease. However, one primary distinction 

between MRS and PRS arises from the complex ecosystem of the microbiota, which is 

driven by interactions among the sub-community of microorganisms or between 

microorganisms and human host. Therefore, rather than the weighted sum of the relative 

abundance from the microbial sub-community, the community-based MRS applies 
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various alpha diversity indexes, which measure the richness and evenness within a single 

sample, to the sub-community with microbial biomarkers associated with the disease.  

The MRS algorithm includes two major steps: (1) sub-community determination; (2) 

risk score calculation and validation. The first step involves the application of differential 

abundance analysis, such as ANCOM-BC, ALDEx2 [29] and Maaslin2 [30], on the 

discovery cohort to identify the ASVs that associate with disease. ANCOM-BC algorithm 

gives each ASVs a significant p value. Next, the inclusion of ASVs in the sub-community 

is determined using pruning and thresholding method (P+T method). P+T method prune 

the ASVs by the p value threshold. ASVs with p value lower than the threshold were 

included. To determine the p value threshold, P+T method systematically evaluates all 

possible p value thresholds, ranging from low to high. The lowest p value threshold can 

include a least three ASVs and the highest threshold can include all ASVs. For each 

possible p value, one MRS model is constructed on the samples in discovery cohort, 

which calculated the alpha diversity index (such as Shannon, Simpson and Observed) 

using ASVs under the threshold. In the next step of the MRS framework, ROC curves 

were built based on all of the MRS models. The optimal MRS model with the highest 

Area under ROC curve (AUC) on the discovery cohort is selected. In the second step, the 

optimal MRS model is calculated on the discovery cohort and validated by the validation 

cohort.  

Based on the MRS framework, the global test of ANCOM-BC was used to identify 

the significant ASVs across the control, adenoma and CRC groups. The sub-community 

of biomarkers that maximized the mean MRS value difference between control and CRC 

groups was determined by pruning and thresholding method. The Shannon alpha diversity 
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index were used to calculate the MRS value on both discovery and validation cohort. The 

statistical significance of average MRS between groups were tested by unpaired two-

tailed Student’s t test. 
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Chapter 3. Results 

In this study, three datasets from USA containing stool samples and corresponding 

16S rRNA gene sequencing data were utilized to investigate the potential of gut 

microbiome biomarkers as non-invasive screening tool for CRC and adenoma. The 

overall characteristics of all three datasets were listed in Section 3.1. The biomarkers that 

significant difference across control, adenoma and CRC groups were identified by 

ANCOM-BC and chi-square test. RF models with different classification strategies were 

trained and external validation with the identified biomarkers. Finally, the MRS model 

for CRC screening was constructed by the sub-community included 7 bacterial genera, 

which were selected by ANCOM-BC and P+T method. 

3.1 Alterations of gut microbial composition between control, 

adenoma and CRC groups 

In order to identify potential biomarkers in the gut microbiome for the development 

of a stool-based test for colorectal cancer (CRC), three datasets containing stool samples 

and corresponding 16S rRNA gene sequencing data were utilized. These datasets 

consisted of individuals from the United States of America (USA) and/or Canada, 

including patients diagnosed with adenoma, advanced adenoma, CRC, as well as healthy 

controls. A comprehensive description of the included datasets can be found in Table 3.1. 

To ensure data quality and consistency, all raw sequencing data underwent preprocessing 

using the EasyMAP platform. BMI and age were higher in CRC and adenoma groups 

compared to control groups 
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Table 3.1: Information of the datasets with stool samples included in the study. 

Study 
Control 

(No.) 

Adenoma 

(No.) 

Advanced 

adenoma 

(No.) 

CRC 

(No.) 
Age BMI 

Baxter 

[20] 
187 101 124 127 

60.32 

(SD=12.18) 

27.18 

(SD=5.63) 

Dadkhah 

[21] 
237 242 73  

62.12 

(SD=8.74) 

27.22 

(SD=5.05) 

Zackular 

[22] 
30 30  30 

58.66 

(SD=10.67) 

28.18 

(SD=5.93) 

Total 454 373 197 157   

To visualize the gut microbiome data within the three datasets, a comparison across 

the control, adenoma, advanced adenoma (AA), and CRC groups was conducted using 

principal component analysis (PCA) and the relative abundance composition at the 

phylum level. 

Figure 3.1: Principal component analysis of the gut microbiome samples from all 

three studies in control, adenoma, advanced adenoma (AA) and CRC groups. The 

first two PCs each explained 33.5% and 12.6% of variance. 
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Figure 3.2: Stacked phylum level relative abundance bar plot of the gut microbiome 

samples from all three studies in control, adenoma, advanced adenoma (AA) and 

CRC groups. Y axis: the stacked relative abundance of the four groups. 

In the principal component analysis plot, CRC groups showed difference compared 

to control and adenoma groups, where CRC groups was slightly separated with control 

and adenoma groups in PCA (Figure 3.1). The gut microbiome composition of the four 

examined groups in phylum-level was predominantly characterized by the presence of 

Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Verrucomicrobia 

(Figure 3.2). Of particular interest, the Firmicutes / Bacteroidetes ratio (referred to as the 

F/B ratio), determined by the abundance of the first two dominant phyla, was relatively 

higher in CRC group in comparison to the other three groups. With these two results, the 

gut microbiome data of CRC groups were different with other groups of samples. Besides, 

due to the lack of validation dataset, the advanced adenoma group was combined to 

adenoma group in the following feature selection, classification models and MRS model. 
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3.2 Features selection across control, adenoma and CRC 

groups 

In order to conduct a more comprehensive analysis of the gut microbiome variations 

between the control, adenoma, and CRC groups, the log fold changes of bacterial genera 

between the three groups were calculated using the abundance data. As shown in Figure 

3.3, Porphyromonas, Collinesela, Fusobacterium, Peptostreptococcus and Parvimonas 

exhibited significantly higher abundance in the CRC group compared to both the control 

and adenoma groups. Conversely, the abundance of Anaerostipes and Haemophlius was 

found to be comparatively lower in the CRC group compared to the other two groups.  

Figure 3.3: Log fold change of the significant bacterial genera among control, 

adenoma and CRC groups. Y axis: the log fold change in different comparison. 
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Figure 3.4: Proportions of bacterial genera change in three groups: (A) Lower in 

CRC group; (B) Higher in CRC group; (C) Lower in adenoma group. Y axis: the 

percentage of the samples within the group that observed the biomarkers. 

Additionally, addressing the challenges posed by the relatively low abundance and 

sparsity of the ASV table, the appearance ratios of bacterial genera within the three groups 

were employed. The ASV table with appearance data showed the difference of observed 

or unobserved in samples rather than high or low abundance. The appearance ratio of a 

ASV within a specific group was defined as the percentage of the samples within the 

group that observed the ASV. Notably, a cluster of bacterial genera exhibited a higher 

occurrence in the CRC group, indicating that these bacterial genera were highly observed 

in samples from CRC group (Figure 3.4 (A)). Samples with these genera observed were 

more likely to be in CRC group. On the contrary, another cluster of bacterial genera 

displayed a lower occurrence in the CRC group compared to the other two groups, 

suggesting they were highly observed in the normal and adenoma groups. Samples 

without these genera observed may indicated to be in CRC group (Figure 3.4 (B)). The 

(C) 

(A) (B) 
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third groups of genera were lower appeared in adenoma group (Figure 3.4 (C)), showing 

that there were still differences between adenoma and other two groups. 

The high dimensional and sparse ASV table impeded its direct usage for machine 

learning model prediction. Therefore, the method described in Figure 2.2 was employed 

to select gut microbiome biomarkers. Specifically, the genus level ASV table underwent 

analysis using the global test of ANCOM-BC algorithm and chi-square analysis among 

control, adenoma and CRC groups. A significance threshold of p-value < 0.01 was 

applied on both of the testing method, resulting in the selection of 109 biomarkers. 10 

biomarkers listed in Figure 3.3 were selected by ANCOM-BC and 99 biomarkers were 

selected by chi-square test. These biomarkers were subsequently utilized as input features 

for the machine learning models.  

3.3 Microbial classification models for control, adenoma and 

CRC groups 

 Next, to test the ability for using gut microbiome biomarkers selected in Section 3.2 

as CRC stool-based screening tool, random forest classification models with stratified 10-

fold cross-validation (CV) were constructed by pooling the Baxter and Dadkhah datasets 

as training data. Zackular dataset was selected to be the hold-out external validation 

dataset. The advanced adenoma group was merged with the adenoma group if advanced 

adenoma group wasn’t specified in the classification strategies. The 109 differential 

biomarkers identified by ANCOM-BC and chi-square test were using as input features.  
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Table 3.2: Model performance metrics of random forest classifiers in pairwise 

binary classification strategies. Strategies: negative vs positive class; validation method: 

10-fold CV and external validation for each strategy; AUC, accuracy, sensitivity, 

specificity: the evaluation metrics for models. 

Strategy 
Validation 

method 
AUC Accuracy Sensitivity Specificity 

Control vs 

Adenoma 

10-fold cross 

validation 

0.63 

(SD=0.05) 

0.59 

(SD=0.04) 

0.79 

(SD=0.08) 

0.40 

(SD=0.09) 

External 

validation 
0.62 0.55 0.73 0.37 

Adenoma vs 

CRC 

10-fold cross 

validation 

0.90 

(SD=0.02) 

0.86 

(SD=0.05) 

0.38 

(SD=0.12) 

0.97 

(SD=0.01) 

External 

validation 
0.84 0.66 0.33 0.98 

Control vs 

CRC 

10-fold cross 

validation 

0.90 

(SD=0.05) 

0.85 

(SD=0.04) 

0.43 

(SD=0.13) 

0.97 

(SD=0.02) 

External 

validation 
0.82 0.67 0.38 0.96 

 

First, the pairwise binary classifications were performed to discover the ability for 

distinguishing one group over another. Pairwise classifications helped us to find out the 

pair of groups that were distinctively difference across these three groups. When using 

the control vs CRC strategy to train and validate the model, the 10-fold CV and external 

validation AUC were 0.90 and 0.82 separately. The specificity was relatively high in both 

10-fold CV and external validation, which were 0.97 and 0.96. However, the accuracy 

performance drops when using external validation. (Table 3.2) 

The model performance of adenoma vs CRC strategy showed similar result compare 

with control vs CRC strategy, with AUC 0.90 and 0.84 in 10-fold CV and external 



doi:10.6342/NTU202303093

 

30 

 

validation. Nevertheless, the model performance of control vs adenoma strategy showed 

poor prediction power compare to the other two strategies, with AUC only 0.63 and 0.62 

in 10-fold CV and external validation (Table 3.2). This result may cause by the lack of 

distinction between control and adenoma groups in gut microbiome composition (Figure 

3.2) and appearance proportions of the existed bacterial genera (Figure 3.4).  

Adenoma might slowly progress to CRC. Therefore, CRC incidence can be 

significantly prevented by early detection of adenoma. Early detection of adenoma offers 

an opportunity for further treatments to prevent the adenoma progression to CRC. For an 

early detection tool, it is crucial to discover the patients with disease or with higher risk 

to get disease. The early detection tool with higher sensitivity can identify most of the 

disease group. The Control vs Adenoma + CRC strategy was trying to detect both 

adenoma and CRC for early detection of the disease group. The samples in CRC group 

represented patients that already had cancer, and the samples in adenoma group 

represented patients that had higher risk to gradually get cancer. Though AUC and 

accuracy were not as good as the other strategies, this strategy showed higher sensitivity, 

0.87 and 0.97, in 10-fold cross validation and external validation (Table 3.3). Higher 

sensitivity represents more patient can be correctly identified, which is important for early 

detection screening methods. Patients that are identified as adenoma + CRC group can 

perform further investigation, such as colonoscopy, to verify whether the patients are 

adenoma or CRC. 
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Table 3.3: Model performance metrics of random forest classifier in Control vs 

Adenoma + CRC binary classification strategies. 

Strategy 
Validation 

method 
AUC Accuracy Sensitivity Specificity 

Control vs 

Adenoma + 

CRC 

10-fold cross 

validation 

0.71 

(SD=0.05) 

0.66 

(SD=0.03) 

0.87 

(SD=0.03) 

0.36 

(SD=0.06) 

External 

validation 
0.80 0.72 0.97 0.21 

 

3.4 Microbial risk score for CRC 

MRS is a continuous risk score that summarizing the disease-specific microbial 

profiles. The MRS workflow was conducted in this study to provide a more directly way 

to assess the risk of patient to get CRC.  

To compute the MRS score among control, adenoma and CRC group, the Baxter and 

Zackular datasets containing both three groups of the samples were included as discovery 

and validation cohort. Following the MRS workflow, the genus level ASV table with 

absolute abundance was analyzed by ANCOM-BC algorithm to identify the significant 

bacterial genera. Then, the sub-community for MRS calculation was determined by P+T 

method. Specifically, the p-value threshold was determined by the sub-community that 

maximize the mean difference of the MRS value between control and CRC groups. With 

p-value threshold < 0.01, 7 bacterial genera were included to calculate the MRS score. 

The MRS values were computed based on Shannon index. The abundance of the 7 

included genera, Porphyromonas, Peptostreptococcus, Parvimonas, Fusobacterium, 
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Haemophilus, Atopobium and Collinsella, showed significantly different between groups 

(Figure 3.3). 

The mean and standard deviation of the MRS score among control, adenoma and 

CRC groups in Baxter and Zackular datasets were listed in Table 3.4. Figure 3.5 showed 

the means and the 95% confidence inetrvals (CI) of MRS among three groups. The 

differences of means between groups were tested by Student’s t test. In Baxter dataset, 

the average MRS score of the CRC group was significantly higher than the control group 

(p = 2.1 × 10-12) and the adenoma (p = 6.9 × 10-7) group, and the average MRS score of 

the adenoma group was significantly higher than the control group (p = 0.0046). In 

Zackular dataset, the average MRS score of CRC group was also significantly higher than 

the adenoma group (p = 0.021). The tests results showed that the means of MRS were 

different between groups. The means of MRS were increased from control, adenoma to 

CRC groups, indicated that samples with higher MRS score were related to higher risk of 

being in the CRC group in these two USA/Canada datasets. 

Table 3.4: Mean and standard deviation of the MRS score across control, adenoma 

and CRC groups in discovery and validation cohort. SE: standard error 

Study Control Adenoma CRC 

Baxter 

(discovery) 

0.22 

(SE=0.025) 

0.34 

(SE=0.029) 

0.62 

(SE=0.053) 

Zackular 

(validation) 

0.40 

(SE=0.10) 

0.27 

(SE=0.069) 

0.56 

(SE=0.10) 
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Figure 3.5: Average and 95% CI of the MRS score across control, adenoma and 

CRC groups in discovery and validation datasets. Y axis: MRS score; X axis: three 

groups of samples in two datasets; error bar: 95% CI; *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 

0.001 (Student’s t test). 
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Chapter 4. Discussion and conclusions 

Two kinds of models were built in this study. The results of the random forest model 

for pairwise and early detection classification showed the potential to classify CRC and 

adenoma groups using stool based gut microbiome data. In addition, MRS framework 

was applied in this study. MRS score based on significant biomarkers can give each 

patients a score that indicate the risk of getting CRC. In our MRS model, only 7 

biomarkers were needed in the sub-community to calculate the MRS score, which could 

be an efficient and low-cost tool for CRC risk evaluation. 

In this study, stool-based gut microbiome data from published datasets were 

processed and compared the difference between control, adenoma and CRC groups. Then, 

the genus-level biomarkers were identified from abundance and appearance data by 

combining ANCOM-BC and chi-square test result. These biomarkers were served as the 

input of RF classification models. Models had great AUC for control vs CRC and 

adenoma vs CRC strategies with pairwise classification. The early detection strategy, 

control vs adenoma + CRC, showed great sensitivity that recall most of the patients. 

Another screening strategy that took account for the advanced adenoma, showed 

comparable result for sensitivity and specificity with other stool-based screening test. 

Most of the included datasets sequenced the V4 or V3-V4 regions of the 16S rRNA 

gene. Only the Dadkhah dataset sequenced the V1-V3 regions. The difference of the 

sequencing region might affect the results of the ASV taxonomy assignment. Different 

data preprocessing method is needed to deal with data in different sequencing regions. 

Therefore, when performing the taxonomy assignment, the specific taxonomy classifiers 
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were trained based on the targeted V1-V3, V3-V4 or V4 region by Silva database to 

precisely assign the taxonomy in the datasets with different sequencing regions. Then, 

different datasets were merged by the assigned taxon to proceed the further analysis. 

The two dominant bacterial phyla in human gut are Firmicutes and Bacteroidetes. 

Therefore, the difference of Firmicutes / Bacteroidetes ratio infer to a huge alteration of 

bacterial community in gut microbiome. Lots of studies have reported that F/B ratio is 

related to Obesity [31], Type I diabetes [32] and other diseases. The result of previous 

studies show that the F/B ratio of the CRC stool samples are higher compared to normal 

samples [33, 34]. Consistent with previous studies investigating the relationship between 

CRC and the gut microbiome, our study also indicate that the Firmicutes / Bacteroidetes 

(F/B) ratio is relatively higher in the CRC group compared to the healthy control group. 

This observation aligns with the growing evidence suggesting a potential association 

between an altered F/B ratio and the development or progression of CRC. 

In this study, differential abundance analysis was conducted using the ANCOM-BC 

algorithm. ANCOM-BC correct the bias introduced by sampling fractions. Different 

sampling fractions for each sample may cause the observed abundance not representing 

the real abundance of the unobserved ecosystem. By correcting the sampling fractions, 

ANCOM-BC control the false discovery rate and perform great testing power. Other 

differential abundance analysis method, such as ALDEx2 and LefSe are also widely 

used in microbiome studies. 109 biomarkers on the genus-level, including 

Porphyromonas, Fusobacterium, Peptostreptococcus and Parvimonas, were identified 

among control, adenoma and CRC groups by the biomarkers selection method (Figure 

2.2) using the global test of ANCOM-BC and chi-square testing. A group of bacterial 
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species, such as Parvimonas micra [35], Fusobacterium nucleatum [36], 

Porphyromonas gingivalis [37] and Peptostreptococcus stomatis [37], are widely 

reported to be associated with development and prognosis of CRC. Despite the 

limitation and resolution of 16S rRNA gene sequencing, Porphyromonas, 

Fusobacterium, Peptostreptococcus and Parvimonas were also identified in genus-level, 

which showed similar result with other studies.  

There are many types of classification model structure, such as multilayer perceptron 

(MLP), convolution neuron network (CNN), random forest and support vector machine. 

We had attempted the deep learning structure, including MLP and CNN, but the AUC 

performance for control vs CRC strategy were around 0.83, which were lower than the 

performance of random forest. The reason may be the number of samples were not 

enough for training a deep learning model. 

Among the model performance of the RF in pairwise binary classification, control 

vs CRC and adenoma vs CRC strategies had the best performance, both had 0.90 in 

AUC. These results were also higher than other related studies [38, 39], which perform 

AUC 0.80 and 0.89 in control vs CRC and adenoma vs CRC. Though loss in other 

evaluation metrics, control vs adenoma strategy still had slightly better sensitivity 

compared to the other two strategies. Due to similar between control and adenoma 

groups, while CRC screening, the control vs CRC strategy can be used specific to 

classify the CRC groups against the other two groups. The sensitivity and the specificity 

showed different pattern in different model classification strategies. These result might 

cause by the unbalanced datasets. Though the class weight were balanced by the 

inversely proportion of class frequencies while model training, the unbalanced dataset 
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still affected the model performance. Down sampling or other methods is needed to 

reduce the effect of unbalanced dataset and further improve the model performance. 

About the stool-based CRC screening tests, guaiac-based fecal occult blood test 

(gFOBT) had largely replaced by Fecal immunochemical test (FIT) due to the 

convenience and effectiveness of FIT [40]. However, FIT still can’t perform well on 

detecting advanced adenoma (AA). Pooled analysis showed that the sensitivity for 

detecting advanced adenoma is about 23% and the specificity is 94% [41]. Our 

classification sensitivity for AA + CRC against Control +adenoma was 43% and the 

specificity was 94%, which was similar with the pooled analysis result of the FIT 

screening test. This result showed the potential of using gut microbiome for advanced 

adenoma screening. In fact, PCA analysis (Figure 3.1) showed that the advanced 

adenoma and adenoma groups were different, and the advanced adenoma group was 

similar with CRC groups. More stool-based gut microbiome datasets with advanced 

adenoma are needed to validate the result of this study. The FIT screening test is the most 

widely used method for CRC and advanced adenoma screening. Therefore, our model has 

the potential to compete with FIT. Furthermore, our model can even combine with FIT 

result to get a better performance for CRC and advanced adenoma screening.  

The MRS framework applied on the Baxter dataset as discovery cohort. The ASVs 

were pruned using the p value calculated by ANCOM-BC. The sub-community that 

maximized the average difference of the MRS score between control and CRC groups in 

discovery cohort. Based on this method, 7 biomarkers were included into the sub-

community. The MRS model applied on the Baxter dataset showed significantly 

increasing MRS score across control, adenoma and CRC group, indicated the ability of 
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CRC screening using MRS score. Validation on the Zackular dataset showed similar 

result. The average MRS score of the CRC group was significantly higher than adenoma 

group in the Zackular datset. Nevertheless, the average MRS score of the adenoma group 

in Zackular dataset was slightly lower than the adenoma group in Baxter dataset. It might 

due to the slightly difference in gut microbiome for the adenoma groups between 

discovery dataset, with both adenoma and advanced adenoma, and validation dataset, 

without advanced adenoma. Using different alpha diversity index had similar result 

compared with Shannon index.  

 To find the potential MRS thresholds for CRC screening, the MRS score of control 

and CRC groups were considered. As shown in Figure 4.1, the MRS score in 70% of 

samples in control groups were highly accumulate between 0 to 0.25, while only about 

40% of the samples in CRC groups were lower than 0.25. Based on the percentiles of two 

groups (Table 4.1 and Figure 4.1), the potential MRS thrseholds could be set to 0.12 and 

0.21, which was the 60 percentile of control group and 40 percentile of CRC group. 

Samples with MRS score under 0.12, which was lower than the 35 percentile of CRC 

group, were considered as safe group. Samples with MRS score above 0.21, which neared 

the 70 percentile of control group, were considered as danger group. Samples with MRS 

score between 0.12 and 0.21 were considered as warning group. 
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Figure 4.1: Percentiles of the pooled MRS score in control and CRC groups. X axis: 

MRS score; red bar: the percentiles of MRS score. 

 

Table 4.1: Mean and percentiles of the pooled MRS score in control and CRC groups. 

SE: standard error 

Groups Mean 
Percentiles 

25 30 35 40 45 50 55 60 65 70 75 

Control 
0.25 

(SE=0.025) 
0 0 0 0 0 0.035 0.071 0.12 0.19 0.25 0.37 

CRC 
0.61 

(SE=0.046) 
0.039 0.066 0.14 0.21 0.34 0.42 0.62 0.74 0.90 0.97 1.0 

 

Other than the dataset from USA or Canada, studies from different regions may 

affect the application of the MRS model for CRC screening. Therefore, Yang and Cong 
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datasets from China (detail information listed in Table 2.1) were processed and calculated 

the MRS score to evaluate the MRS model. Using the same sub-community of 7 

biomarkers identified in Baxter discovery cohort, the average MRS score of the two China 

datasets were higher compared to Baxter and Zackular datasets in both control and CRC 

groups. Nevertheless, compared between control and CRC groups from the two China 

datasets, the average MRS score also significantly increased from control to CRC groups 

(Figure 4.2 and Table 4.3), with p = 3.4 × 10-6 in Yang dataset and p = 0.0017 in Cong 

dataset separately. This result showed the similar pattern with two USA/Canada datasets, 

which indicated the potential cross-regional application of the proposed MRS model. 

Table 4.2: Information of the external validation datasets in China with stool 

samples 

Study Control (No.) CRC (No.) Published year 

Yang [23] 50 50 2019 

Cong [24] 11 10 2018 

 

Table 4.3: Mean and standard deviation of the MRS score in China datasets. SE: 

standard error 

Study Control CRC 

Yang 
0.70 

(SE=0.074) 

1.23 

(SE=0.075) 

Cong 
0.51  

(SE=0.12) 

1.45  

(SE=0.23) 



doi:10.6342/NTU202303093

 

41 

 

Figure 4.2: Average and 95% CI of the MRS score in China datasets. Y axis: MRS 

score; X axis: control and CRC groups in two china datasets; error bar: 95% CI. **: p ≤ 

0.01, ***: p ≤ 0.001 (Student’s t test). 

To further enhance future research in this study, several aspects could be improved. 

First, considering the limitations of 16S rRNA gene sequencing data, future research 

could explore the utilization of more advanced techniques such as shotgun whole genome 

sequencing (WGS) or 16S rRNA full-length sequencing. These methods offer higher 

resolution in taxonomy assignment. Besides, WGS also provide additional functional 

predictions [42]. By incorporating these sequencing approaches, the increased resolution 

and additional information can potentially improve the accuracy of classification models 

used in the study and gain more understanding of the gut microbiome composition and 

its potential function in relation to CRC. Another aspect that can contribute to the 

improvement of future research is the inclusion of more gut microbiome datasets, 

specifically those including samples from patients with advanced adenoma. By expanding 
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the available datasets, the performance the random forest classifier can be enhanced by 

training and external validation for advanced adenoma classification. The MRS model 

can also improve to classify different groups of samples, like adenoma or advanced 

adenoma. The gut microbiome between the adenoma and advanced adenoma (AA) groups 

showed difference in PCA and phylum-level gut microbiome composition. The advanced 

adenoma group was even more similar with CRC group in PCA analysis. More datasets 

containing AA samples is needed to improve the performance of RF models classifying 

AA groups and construct the MRS models for AA screening. As a continuous score, MRS 

models can be integrated with other types of data, such as multi-omics data or ages, which 

can hopefully improve the performance of MRS score. 
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