請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89651
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 翁德怡 | zh_TW |
dc.contributor.advisor | Te-I Weng | en |
dc.contributor.author | 朱柏穎 | zh_TW |
dc.contributor.author | Bo-Ying Chu | en |
dc.date.accessioned | 2023-09-13T16:14:49Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-13 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-10 | - |
dc.identifier.citation | 1. Patterson, A.D., F.J. Gonzalez, and J.R. Idle, Xenobiotic metabolism: a view through the metabolometer. Chemical research in toxicology, 2010. 23(5): p. 851-860.
2. Idle JR, G.F., Metabolomics. Cell Metab. , 2007: p. 348–351. 3. Jobin, P., H. Chen, and Y.-p. Lin, Translating Toxic Exposure: Taiwan RCA. Toxic News, 2018. 4. Pei, X., et al., The China melamine milk scandal and its implications for food safety regulation. Food policy, 2011. 36(3): p. 412-420. 5. Chen, B., et al., A sensitive quantification approach for detection of HETE-CP adduct after benzyl chloroformate derivatization using ultra-high-pressure liquid chromatography tandem mass spectrometry. Analytical and bioanalytical chemistry, 2019. 411: p. 3405-3415. 6. Kolars, J.C., et al., Aflatoxin B1-adduct formation in rat and human small bowel enterocytes. Gastroenterology, 1994. 106(2): p. 433-439. 7. IARC, IARC, Monographs on the evaluation of carcinogenic risks to humans: some industrial chemicals, vol. 60, Lyon, 15–22 February, 1994, pp 389–433. 8. Ishii, Y., et al., Acrylamide induces specific DNA adduct formation and gene mutations in a carcinogenic target site, the mouse lung. Mutagenesis, 2015. 30(2): p. 227-235. 9. Rahbar, S., The discovery of glycated hemoglobin: a major event in the study of nonenzymatic chemistry in biological systems. Annals of the New York Academy of Sciences, 2005. 1043(1): p. 9-19. 10. John, G. and E. English, IFCC standardised HbA1c: should the world be as one? Clinical Chemistry and Laboratory Medicine (CCLM), 2012. 50(7): p. 1243-1248. 11. Rydosz, A., Diabetes Without Needles: Non-invasive Diagnostics and Health Management. 2022: Academic Press. 12. Rappaport, S.M., et al., Adductomics: characterizing exposures to reactive electrophiles. Toxicology letters, 2012. 213(1): p. 83-90. 13. Carlsson, H. and M. Törnqvist, Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one. Food and Chemical Toxicology, 2016. 92: p. 94-103. 14. Fennell, T.R., et al., Metabolism and hemoglobin adduct formation of acrylamide in humans. Toxicological Sciences, 2005. 85(1): p. 447-459. 15. Smith, J.B., Peptide sequencing by Edman degradation. eLS, 2001. 16. Costa, L.G., et al., Evaluation of the neurotoxicity of glycidamide, an epoxide metabolite of acrylamide: behavioral, neurochemical and morphological studies. Toxicology, 1995. 98(1-3): p. 151-161. 17. Riboldi, B.P., Á.M. Vinhas, and J.D. Moreira, Risks of dietary acrylamide exposure: A systematic review. Food chemistry, 2014. 157: p. 310-322. 18. Hagmar, L., et al., Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scandinavian journal of work, environment & health, 2001: p. 219-226. 19. Hagmar, L., et al., Differences in hemoglobin adduct levels of acrylamide in the general population with respect to dietary intake, smoking habits and gender. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2005. 580(1-2): p. 157-165. 20. Tareke, E., et al., Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of agricultural and food chemistry, 2002. 50(17): p. 4998-5006. 21. Chevolleau, S., et al., Analysis of hemoglobin adducts of acrylamide and glycidamide by liquid chromatography–electrospray ionization tandem mass spectrometry, as exposure biomarkers in French population. Journal of Chromatography A, 2007. 1167(2): p. 125-134. 22. Barceló, D. and M. Petrovic, Challenges and achievements of LC-MS in environmental analysis: 25 years on. TrAC Trends in Analytical Chemistry, 2007. 26(1): p. 2-11. 23. Waters™. 2023, UPLC初學者指南, Retrieved May 27, 2023, from https://www.waters.com/nextgen/tw/zh/education/primers/beginner-s-guide-to-uplc.html. 24. Waters™. 2023, Xevo TQ-S Micro三段四極桿質譜儀, Retrieved May 27, 2023, from:https://www.waters.com/waters/zh_TW/Xevo-TQ-S-micro-Triple-Quadrupole-Mass-Spectrometry/nav.htm?cid=134798856&locale=zh_TW. 25. Ogawa, M., et al., Hemoglobin adducts as a marker of exposure to chemical substances, especially PRTR class I designated chemical substances. Journal of occupational health, 2006. 48(5): p. 314-328. 26. Balbo, S., et al., Application of a high-resolution mass-spectrometry-based DNA adductomics approach for identification of DNA adducts in complex mixtures. Analytical chemistry, 2014. 86(3): p. 1744-1752. 27. Carlsson, H., et al., LC–MS/MS screening strategy for unknown adducts to N-terminal valine in hemoglobin applied to smokers and nonsmokers. Chemical research in toxicology, 2014. 27(12): p. 2062-2070. 28. Zhao, S. and L. Li, Chemical isotope labeling LC-MS for metabolomics. Cancer Metabolomics: Methods and Applications, 2021: p. 1-18. 29. T.R.Fennell, T.R. Fennell, R.W. Snyder, W.L. Krol, S.C. Sumner, Toxicol. Sci. 71 (2003) 164. 30. Meesters, R. and S. Voswinkel, Bioanalytical method development and validation: from the USFDA 2001 to the USFDA 2018 guidance for industry. J Appl Bioanal, 2018. 4(3): p. 67-73. 31. Schettgen, T., et al., Determination of haemoglobin adducts of acrylamide and glycidamide in smoking and non-smoking persons of the general population. International journal of hygiene and environmental health, 2004. 207(6): p. 531-539. 32. von Stedingk, H., et al., Analysis of hemoglobin adducts from acrylamide, glycidamide, and ethylene oxide in paired mother/cord blood samples from Denmark. Chemical research in toxicology, 2011. 24(11): p. 1957-1965. 33. Yamamoto, J., et al., Acrylamide–Hemoglobin Adduct Levels in a Japanese Population and Comparison with Acrylamide Exposure Assessed by the Duplicated Method or a Food Frequency Questionnaire. Nutrients, 2020. 12(12): p. 3863. 34. Bjellaas, T., et al., Comparison of estimated dietary intake of acrylamide with hemoglobin adducts of acrylamide and glycidamide. Toxicological sciences, 2007. 98(1): p. 110-117. 35. Bergmark, E., Hemoglobin adducts of acrylamide and acrylonitrile in laboratory workers, smokers and nonsmokers. Chemical research in toxicology, 1997. 10(1): p. 78-84. 36. Schettgen, T., et al., A first approach to estimate the internal exposure to acrylamide in smoking and non-smoking adults from Germany. International journal of hygiene and environmental health, 2003. 206(1): p. 9-14. 37. Vesper, H.W., et al., Automated method for measuring globin adducts of acrylamide and glycidamide at optimized Edman reaction conditions. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry, 2006. 20(6): p. 959-964. 38. Xie, J., et al., Acrylamide hemoglobin adduct levels and ovarian cancer risk: a nested case–control study. Cancer epidemiology, biomarkers & prevention, 2013. 22(4): p. 653-660. 39. Shimamura, Y., et al., Factors Influencing the Formation of Chemical–Hemoglobin Adducts. Toxics, 2021. 10(1): p. 2. 40. Fennell, T.R. and M.A. Friedman. Comparison of acrylamide metabolism in humans and rodents. in Chemistry and Safety of Acrylamide in food. 2005. Springer. 41. Besaratinia, A. and G.P. Pfeifer, Genotoxicity of acrylamide and glycidamide. Journal of the National Cancer Institute, 2004. 96(13): p. 1023-1029. 42. Bryant, M.S., et al., Hemoglobin adducts of aromatic amines: associations with smoking status and type of tobacco. Proceedings of the National Academy of Sciences, 1988. 85(24): p. 9788-9791. 43. Fennell, T.R., et al., Hemoglobin adducts from acrylonitrile and ethylene oxide in cigarette smokers: effects of glutathione S-transferase T1-null and M1-null genotypes. Cancer Epidemiology Biomarkers & Prevention, 2000. 9(7): p. 705-712. 44. Törnqvist, M., Formation of reactive species that lead to hemoglobin adducts during strong of blood samples. Carcinogenesis, 1990. 11(1): p. 51-54. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89651 | - |
dc.description.abstract | 談到法醫毒物學,一般大眾首先想到毒殺、中毒、酒精與毒品濫用造成的社會問題,但不可忽視的還有「環境汙染與公害」。隨經濟與科技發展,稱作異性生物質(xenobiotics)的環境毒物,亦無聲無息地影響人類健康,而慢性影響導致的病害與死亡,往往難以證明與鑑定,成為法醫毒物學的一大挑戰。
其中由生活上單純飲食攝入之異型性生物質,更可說是無人能倖免。這些分子改變了人體組織結構,也可能因此造成病變。好比存在高溫烹調澱粉食物中的丙烯醯胺(acrylamide),惡名昭彰,乃因丙烯醯胺為一α, β-unsaturated carbonyl 化合物,可和血紅蛋白形成加成物(acrylamide adduct)。又血紅蛋白有容易取得、半衰期長的特性,使acrylamide adduct在過往文獻中,已引起許多討論,亦被當作丙烯醯胺暴露指標(biomarker)。然而,加成物與疾病的關聯仍尚未明朗,學者們也正試圖發現除丙烯醯胺外,更多未知的血紅蛋白加成物。 因此,本研究一方面透過現今準確度最高之液相層析儀-極致高效液相層析(UPLC)串聯質譜儀,在萃取最佳化後,測試臨床不孕症病患(N=29)血中acrylamide adduct濃度,一方面使用UPLC串聯高解析度質譜儀,搭配化學同位素標記法(chemical isotope labeling)與統計,找出一般血中可能含有的未標定加成物,及比較受汙染之血液可能出現的加成物。結果為臨床檢體有4位測得acrylamide adduct,濃度由41.17pmol/g Hb至117.58pmol/g Hb;而未標定加成物方面,篩出79至105對可能為加成物(或其碎片)之分子,然受汙染血液和空白血液並未有加成物上之明顯差異。若須明確鑑定出是何種分子形成加成物,則需進一步分析,例如使用串聯質譜儀(MSMS)方法產生離子碎片。 研究應用則期待,未來能以成熟UPLC-MS方法檢驗acrylamide adduct,及其他已知結構之血紅蛋白加成物;也能以CIL-UPLC-HRMS方法,初步篩出不同族群血液中,所存在未知結構之血紅蛋白加成物。俾利法醫毒物學家對環境汙染物之健康影響,獲得更深入的了解,以及可靠的鑑定依據。 關鍵字:環境汙染物、丙烯醯胺、血紅蛋白加成物、化學同位素標記法、極致高效液相層析、高解析質譜儀 | zh_TW |
dc.description.abstract | When it came to forensic toxicology, most of us brought “murder with poison”, “intoxication”, and “drugs and alcohol abuse” into mind. However, one more thing that couldn’t be ignored – people were always affected by environmental pollutants. With the development of science and technology, many poisonous substances called xenobiotics also came up. Unconsciously, these toxins affected our health, even causing irreversible disease as well as death. Although very challenging, forensic toxicology took the responsibility of identifying the controversial xenobiotics and their disadvantages to health.
Xenobiotics from foods would be an issue. These small molecules somehow changed tissue structure in human bodies. The most notorious one, acrylamide, an α, β-unsaturated carbonyl compound common in carbohydrate-rich foods cooked at high temperatures (>120°C), would form covalent adducts with hemoglobin (known as “acrylamide adduct”). Owing to the accessibility and long lifetime of the red blood cells, acrylamide adducts had been discussed in much literature and regarded as a biomarker of acrylamide exposure. Even though the relationship between adduct level and human disease was still not fully understood, many scientists were dedicated to exploring unknown-structured (in other words, untargeted) hemoglobin adducts simultaneously. In our study, intending to study acrylamide adduct levels in infertility patients from NTUH, we applied Edman degradation and UPLC-MS system as analytical procedures. Different from traditional LC-MS, UPLC-MS was invented with higher sensitivity and accuracy. Furthermore, for detecting untargeted hemoglobin (Hb) adducts, we designed a chemical isotope labeling (CIL) method together with UPLC-HRMS (Q-TOF) analysis; meanwhile, we compared the background Hb adducts in polluted blood samples to those in unpolluted blood samples. Results showed acrylamide adduct was detected in 4 of 29 infertility patients, with levels ranging from 41.17 pmol/g Hb to 117.58 pmol/g Hb; concerning untargeted adducts analysis, 79 to 105 possible adducts (fragments) were screened out. However, there was no obvious background adduct difference between polluted samples and unpolluted samples. Besides, MSMS mode was suggested for adduct fragmentation to identify real Hb adducts. In conclusion, our idea emphasized the future work of detecting acrylamide adducts or other targeted adducts via the UPLC-MS approach; on the other hand, with an application of CIL-UPLC-HRMS, scientists could rapidly screen out untargeted Hb adducts in specific groups like smokers. Working with that reliable evidence, forensic toxicologists could come to conclusions without prejudice. Keywords: Environmental pollutants, acrylamide, Hb adduct, CIL, UPLC, HRMS | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-13T16:14:49Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-13T16:14:49Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 iv 第一章 緒論 1 1.1. 前言:環境毒物與人類健康 1 1.2. 血紅蛋白加成物與埃德曼反應 2 1.3. 傳統分析方法 2 1.4. 分析方法面臨的挑戰 3 1.5. 同位素化學標記法-未標定之血紅蛋白加成物 3 1.6. 研究目標 4 第二章 研究方法 6 2.1. 化學品與試劑 6 2.1.1. 化學品 6 2.1.2. 溶劑 6 2.1.3. 儀器 6 2.2. 合成標準品衍生物 6 2.2.1. 合成 AA-[513C, 15N]VAL-PTH與內標準品AA-[513C, 15N]VAL-d5-PTH 6 2.2.2. 質譜儀分析 7 2.2.3. 試管內合成陽性對照品 7 2.3. 血漿樣品 7 2.3.1. 樣品來源 7 2.3.2. 血紅蛋白定量 8 2.3.3. 血紅蛋白之萃取 8 2.4. 埃德曼降解反應 9 2.5. 儀器分析 9 2.6. 標定分析acrylamide adducts 10 2.6.1. 資料處理 10 2.6.2. 方法確效:線性範圍 10 2.6.3. 方法確效:再現性 10 2.7. 非標定分析all adducts 11 2.7.1. 資料處理 11 第三章 實驗結果與討論 12 3.1. Acrylamide adduct 分析方法開發 12 3.1.1. 化學同位素標記法(CIL)與合成標準品結果 12 3.1.2. 前處理最佳化 12 3.1.3. 方法確效 13 3.2. 臨床應用-泌尿部病人實驗結果 14 3.3. 非標定分析 15 3.3.1. 方法建立過程 15 3.3.2. 非標定加成物分析結果 16 3.3.3. 加成物反應機制 17 3.4. 實驗限制 17 第四章 結論與展望 19 4.1. 結論 19 4.2. 展望 19 參考文獻 47 圖目錄 圖一、非標定分析原理表示 20 圖二、AA-VAL-PTH裂解模式 20 圖三、UPLC(in UPLC-QqQ-MS)之移動相濃度梯度 21 圖四、UPLC(in UPLC-Q-TOF-MS)之移動相濃度梯度 21 圖五、DDA模式下,MS/MS之撞擊電壓梯度圖 22 圖六、LabelPick系統語言 23 圖七、非標定分析總流程圖簡示 24 圖八、替代標準品、內標準品與in vitro合成之陽性對照品訊號圖 25 圖九、基質pre-spike內標準品質譜圖 26 圖十、基質post-spike內標準品質譜圖 26 圖十一、純內標準品以25%甲醇稀釋 26 圖十二、由MTBE萃取出之AA-VAL-PTH訊號圖 27 圖十三、Phenyl-D5 isothiocyanate衍伸之phenylthiohydantoin derivatives (AA-VAL-d5-PTH) 27 圖十四、萃取乳化現象 27 圖十五、內標準品萃取率比較 28 圖十六、acrylamide adduct之檢量線 28 圖十七、臨床檢體acrylamide adduct濃度 29 圖十八、Positive對照negative結果 30 圖十九、診斷碎片示意圖 31 圖二十、Untargeted analysis之peak pair分布圖(1) 32 圖二十一、Untargeted analysis之peak pair分布圖(2) 33 圖二十二、無基質時之沖洗背景 34 圖二十三、四組檢體peak pair平均數量圖 34 圖二十四、四組檢體peak pair m/z分布 35 圖二十五、四組檢體比較之火山圖 36 圖二十六、四組檢體PCA與PLS-DA圖 37 圖二十七、四組檢體之質譜分析熱圖 38 圖二十八、陽性對照組306/311 peak pair 39 圖二十九、陽性對照組289/294 peak pair 40 圖三十、M/M+10 peak pair 41 圖三十一、血紅蛋白加成物反應機構圖 42 表目錄 表一、Volatiles organic calibration mix組成 43 表二、標準品與內標準品離子碎片表 44 表三、臨床檢體之血紅蛋白定量濃度 44 表四、再現性試驗結果 45 表五、四組檢體所產生之peak pair數 45 表六、實驗結果與Carlsson, H.等人之研究發現之血紅蛋白加成物比較 46 | - |
dc.language.iso | zh_TW | - |
dc.title | 使用極致高效液相層析串聯質譜儀與化學同位素標記法檢測已知與未知的血紅蛋白加成物 | zh_TW |
dc.title | Targeted and untargeted analysis of hemoglobin adducts using ultra-performance liquid chromatography coupled with tandem mass spectrometry and chemical isotope labeling | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳冠元;廖曉偉 | zh_TW |
dc.contributor.oralexamcommittee | Guan-Yuan Chen;Hsiao-Wei Liao | en |
dc.subject.keyword | 環境汙染物,丙烯醯胺,血紅蛋白加成物,化學同位素標記法,極致高效液相層析,高解析質譜儀, | zh_TW |
dc.subject.keyword | Environmental pollutants,acrylamide,Hb adduct,CIL,UPLC,HRMS, | en |
dc.relation.page | 51 | - |
dc.identifier.doi | 10.6342/NTU202301090 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-10 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 法醫學研究所 | - |
顯示於系所單位: | 法醫學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 3.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。