Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89566
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭隆瀚zh_TW
dc.contributor.advisorLung-Han Pengen
dc.contributor.author蔡明順zh_TW
dc.contributor.authorMing-Shun Tsaien
dc.date.accessioned2023-09-11T16:17:02Z-
dc.date.available2025-07-05-
dc.date.copyright2023-09-11-
dc.date.issued2023-
dc.date.submitted2023-07-06-
dc.identifier.citation[1] K. -. Chang, S. M. Ousaid, L. -. Peng, and A. Boudrioua, "Wavelength Tunable Laser based on Angular Tuning of Two Dimensional Nonlinear Photonic Crystals with Disk Shape," in Optica Advanced Photonics Congress 2022, Technical Digest Series (Optica Publishing Group, 2022), paper NpM2F.2.
[2] Boyd, Nonlinear Optics 3ed, Academic Press, Inc., Ch.2, (2008).
[3] DN Nikogosyan, “Nonlinear Optical Crystals: A Complete Survey,”, pp. 35(2005).
[4] M. Marangoni and R. Ramponi, “Ferroelectric Crystals for Photonic Applications,” Ch.4, (2014).
[5] L. Fenno, O. Yizhar, and K. Deisseroth, Annu Rev Neurosci. Vol .34, pp. 389 (2011).
[6] Shinobu Aoyagi, Hitoshi Osawa, Kunihisa Sugimoto, Makoto Iwata, Shoichi Takeda, Chikako Moriyoshi, and Yoshihiro Kuroiwa, “Crystal structure analysis of LiTaO3 under electric field,” Japanese Journal of Applied Physics, vol.54, 10NB03, (2015).
[7] D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, Z. Yang, and Y. N., Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett., Vol. 37, pp. 607, (1980).
[8] H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., Vol. 27, p. 1221, (1991).
[9] I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method,” Journal of Applied Physics, Vol. 40, pp. 1690, (1969).
[10] Shintaro Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” Journal of Applied Physics, Vol.50, p.4599, (1979).
[11] 韓志勇, “利用鎳擴散利用鎳擴散製程於週期性極化反轉鉭酸鋰垂直調制準相位匹配結構,” 國立臺灣大學光電工程學研究所碩士論文, (2018).
[12] Shintaro Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” Journal of Applied Physics , vol.50, pp.4599, (1979).
[13] W. Koechner, “Solid-State Laser Engineering,” Springer Series in Optical Sciences, Springer, London, UK, 6th edition, p.403 (2006).
[14] G. D. Boyd, A. Ashkin, J. M. Dziedzic, and D. A. Kleinman, “Second-Harmonic Generation of Light with Double Refraction,” Phys. Rev., Vol.137, A1305, (1965).
[15] V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Optical Crystals,” Springer, 3rd ed., Vol.64, (1999).
[16] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Physical Review, vol. 127, no. 6, pp. 1918–1939, (1962).
[17] Martin M. Fejer, G. A. Magel, Dieter H. Jundt, and Robert L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE Journal of Quantum Electronics, Vol.28, No.11, pp. 2631-2654, (1992).
[18] V. Berger, “Nonlinear Photonic Crystals,” Phys. Rev. Lett., vol.81, pp.4136, (1998).
[19] 吳柏緯, “利用非線性光子晶體鉭酸鋰以級聯光學參量振盪器之腔內倍頻架構產生多波長橘黃光雷射之研究,” 國立臺灣大學光電工程學研究所碩士論文, (2021).
[20] G. D. Miller, “Periodically Poled Lithium Niobate: Modeling, Fabrication, and Nonlinear-Optical Performance,” Ph.D. Thesis, Stanford University, Stanford, California, (1998).
[21] I. S. Baturin, A. R. Akhmatkhanov, V. YA. Shur, M. S. Nebogatikov, M. A. Dolbilov, and E. A. Rodina, “Characterization of Bulk Screening in Single Crystals of Lithium Niobate and Lithium Tantalate Family,” Ferroelectrics, Vol.374, pp. 1-13, (2008).
[22] J. W. P. Schmelzer, “Nucleation Theory and Applications,”Wiley-VCH, Weinheim, p.9 (2005).
[23] L.-H. Peng, Y.-C. Fang, and Y.-C. Lin, “Polarization switching of lithium niobate with giant internal field,” Applied Physics Letters, Vol. 74, No. 14, pp. 2070-2072, (1999).
[24] C. Y. J. Ying, G. J. Daniell, H. Steigerwald, E. Soergel, and S. Mailis, “Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals,” Journal of Applied Physics vol.114, pp.083101,(2013).
[25] Venkatraman Gopalan, and Terence E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” Journal of Applied Physics, vol. 85,pp. 2304, (1999).
[26] P. Ferraro , S. Grilli , and P. De Natale, “Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques,” Springer, Berlin, pp.89(2009).
[27] Y.S.Kim,R.T.Smith, “Thermal expansion of lithium tantalite and lithium niobite crystals.” J. Appl. Phys. 40(11), 4637–4641 (1969).
[28] Aleksandra Foltynowicz, “Fiber-laser-basedNoise-Immune Cavity-Enhanced Optical Heterodyne Molecula Spectrometry”, pp.64 (2009).
[29] 吕百达, 激光光学:光束描述、传输变换与光腔技术物理. 高等教育出版社,(2003).
[30] ISO/TR 11146-3:2004, Lasers and laser-related equipment — test methods for laser beam widths, divergence angles and beam propagation ratios — part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods, (2004).
[31] M. Rosete-Aguilar, F. Estrada-Silva, N. Bruce, C. Román-Moreno, and R. Ortega-Martínez, “Calculation of temporal spreading of ultrashort pulses propagating through optical glasses”, Rev. Mex. Fís., vol. 54, no. 2, pp. 141–0, Jan.(2008)
[32] Yariv and Pochi Yeh, “Chromatic dispersion and polarization mode dispersion in fibers” in Photonics, 6th edition, pp. 13-19 (Oxford UniversityPress, 2007).
[33] Mikhail polyanskiy. (2008). Refractive Index Database. RefractiveIndex.INFO. https://refractiveindex.info/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89566-
dc.description.abstract  本論文共分成三部分介紹,第一部分主要介紹非線性光學與準相位匹配概念等理論;第二部分為週期性極化反轉結構的製作方法;最後為光學部分,考慮綠光雷射高斯模態在空腔時之有限發散角0.1°,透過準二維結構以設計非線性光子晶體之晶格動量G1,0與G1,0'其G1,0定義為與綠光雷射共線的動量,G1,0'定義為非共線的動量。而G1,0與G1,0'之間所形成的夾角,則根據於綠光雷射在空腔時的有限發散角0.1°,並以此角度前後各設計0.04°與0.2°以觀察趨勢,目的是使共振腔內的綠光雷射高斯發散動量能通過準二維結構,以產生兩種不同波長的可見光。
吾人發現在輸入能量為350mW下,共線G1,0的訊號強度是非共線G1,0'的0.35倍,強度相對弱很多,不過也發現隨著夾角從0.04°提升至0.2°後,能增強G1,0的訊號強度約2.6倍以上,其斜線效率能提升1.46%以上,出光閥值能降低39.7mW以上,且溫度頻寬也隨之增加約8℃,但尚未發現最佳值的結果。
zh_TW
dc.description.abstractThis thesis is divided into three parts. The first part mainly introduces the theory of nonlinear optics and quasi-phase matching concepts. The second part discusses the fabrication methods of periodic polarization inversion structures. The final is the optical aspect, focusing on the design and implementation of two-dimensional nonlinear photonic crystals (NPCs) structures, which were superposed by two different one-dimensional periodically poled structures at a small. This simultaneous operation of two red light optical parametric oscillations (OPOs). The two reciprocal lattice vector G1,0, G1,0' of the separate 1-D NPCs are intersected at a small angle of 0.04°, 0.1°, 0.2° such that they can be quasi-phase-matched to the small divergent angle 0.1° of the pump green laser. The two-OPOs are operated with different efficiency, with the collinear one G1,0 which is relatively week red light intensity.
We found that at an input energy of 350mW, the signal intensity of the collinear G1,0 is 0.35 times that of the non-collinear G1,0'. The intensity of G1,0 is significantly weaker. However, we also observed that as the angle increases from 0.04° to 0.2°, the signal intensity of G1,0 can be enhanced by more than 2.6 times. The slope efficiency can increase by more than 1.46%, the threshold power can be reduced by more than 39.7mW, and the temperature bandwidth can increase by approximately 8℃. However, the optimal value has not yet been discovered.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-11T16:17:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-11T16:17:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
摘要 ii
Abstract iii
目錄 iv

第一章 簡介 1
1.1 研究背景與動機 1
1.2 非線性晶體介紹 2
1.3 鉭酸鋰介紹 4
1.4 週期性極化反轉機制 7
1.4.1 高電壓致鐵電材料極化反轉介紹 7
1.4.2 金屬在高溫擴散下導致表面鐵電疇淺層反轉 7
1.5 光學參量振盪器簡介 8
第二章 非線性光學理論 10
2.1 非線性光學頻率轉換 10
2.1.1 非線性頻率轉換與χ2介紹 10
2.1.2 耦合方程式 11
2.1.3 考慮基頻光下的無損耗之頻率轉換 13
2.1.4 基頻光損耗下的二倍頻轉換 14
2.1.5 無損耗之基頻光場與二倍頻之溫度頻寬 16
2.1.6 高斯光束之空間分布之基頻光 20
2.2 雙折射相位匹配 (BPM) 21
2.3 準相位匹配理論(QPM) 23
2.3.1 一維準相位匹配 23
2.3.2 二維準相位匹配 28
2.4 光學參量振盪器 31
2.4.1 光學之參量產生 31
2.4.2 光參振盪器 33
第三章 非線性晶體樣品及製程 36
3.1 晶體基本製程流程介紹 36
3.1.1 樣品製作流程介紹 36
3.1.2 晶體內建電場與矯頑電場之量測 37
3.1.3 晶體之鐵電疇方向鑑定 39
3.2 週期性極化反轉製程 41
3.2.1 樣品製作流程 41
3.2.2 高電壓極化反轉(poling)技術架構 45
3.2.3 鐵電域反轉模型 48
3.2.4 反轉電壓的設計 49
3.2.5 週期性鐵電域反轉結構之觀察 57
3.3 晶體週期設計理論 60
3.3.1 晶體週期理論計算 60
3.3.2 晶體之熱膨脹 61
3.3.3 一維疊加至二維晶體設計 62
第四章 光學量測 70
4.1 光學量測架構 70
4.1.1 光學架構 70
4.1.2 雷射品質"M2" 測量 75
4.2 光學量測結果與分析 81
4.2.1 溫度與波長 81
4.2.2 光譜測量與分析 85
4.2.3 斜線效率 88
第五章 結論與未來展望 92
5.1 結論 92
5.2 未來展望 93
第六章 補充資料 94
6.1 超快脈衝雷射在晶體內傳播的時域色散(Temporal Spreading)模擬 94
6.2 多重影像擷取程式設計 97
參考資料 99
附錄 103
超快脈衝雷射在晶體內傳播的時域色散模擬程式碼 103
多重影像擷取程式碼 104
自動繪製AutoCAD程式(多個並聯) 106
輸入圖片進行二維傅立葉分析 107
高溫爐參數圖繪製 108
將圖片RGB資料取出 108
腔內模態模擬 109
計算週期之熱膨脹函數程式碼 111
計算不同經過光學系統的模態(為模態匹配觀察用) 111
-
dc.language.isozh_TW-
dc.subject雙波長zh_TW
dc.subject準二維非線性光子晶體結構zh_TW
dc.subject有限發散角zh_TW
dc.subjecttwo-dimensional nonlinear photonic crystalsen
dc.subjectdual-wavelengthen
dc.subjectdivergent angleen
dc.title準二維非線性光子晶體結構之雙波長紅光研究zh_TW
dc.titleStudy on Generation of Dual-Wavelength Red-Laser in Quasi-2D Nonlinear Photonic Crystal Structuresen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王維新;賴志明zh_TW
dc.contributor.oralexamcommitteeWay-Seen Wang;Chih-Ming Laien
dc.subject.keyword準二維非線性光子晶體結構,雙波長,有限發散角,zh_TW
dc.subject.keywordtwo-dimensional nonlinear photonic crystals,dual-wavelength,divergent angle,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202301363-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2025-07-05-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf5.62 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved