請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89338完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳時欣 | zh_TW |
| dc.contributor.advisor | Shih-Hsin Chen | en |
| dc.contributor.author | 吳沛文 | zh_TW |
| dc.contributor.author | Pei-Wen Wu | en |
| dc.date.accessioned | 2023-09-07T16:35:32Z | - |
| dc.date.available | 2026-01-01 | - |
| dc.date.copyright | 2023-09-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | 林鈺臻 (2011)。超音波製備奈米/次微米油在水中型乳化系統穩定性之探討。未出版之碩士論文,國立宜蘭大學食品科學系,宜蘭縣。
洪祥嘉 (2010)。胞外冰核蛋白及纖維素對過冷卻液體成核溫度之影響。未出版之碩士論文,國立臺灣大學生物資源暨農學院食品科技研究所,台北市。 Abuajah, C. I.; Ogbonna, A. C.; Chukeze, E. J.; Ikpeme, C. A.; Asogwa, K. K. A glucose oxidase peroxidase-coupled continuous assay protocol for the determination of cellulase activity in the laboratory: the Abuajah method. Analytical Biochemistry 2022, 647, 114649. Aday, M. S.; Caner, C.; Yuceer, Y. K. Instrumental and sensory measurements of Ezine cheese texture. Akademik Gıda 2010, 8, 6-46. Albert, C.; Beladjine, M.; Tsapis, N.; Fattal, E.; Agnely, F.; Huang, N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. Journal of Controlled Release 2019, 309, 302-332. Alejandre, M.; Astiasarán, I.; Ansorena, D.; Barbut, S. Using canola oil hydrogels and organogels to reduce saturated animal fat in meat batters. Food Research International 2019, 122, 129-136. Alexandre, E. M.; Brandão, T. R.; Silva, C. L. Frozen food and technology. Advances in Food Science and Technology 2013, 123-150. Bell, L. N. Maillard reaction as influenced by buffer type and concentration. Food Chemistry 1997, 59, 143-147. Berton-Carabin, C. C.; Schroën, K. Pickering emulsions for food applications: background, trends, and challenges. Annual review of food science and technology 2015, 6, 263-297. Bohrer, B. M. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness 2019, 8, 320-329. Bourne, M. C. Texture profile analysis. Food Technol. 1978, 32, 62-66. Chevalier, Y.; Bolzinger, M.-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 439, 23-34. Cui, B.; Mao, Y.; Liang, H.; Li, Y.; Li, J.; Ye, S.; Chen, W.; Li, B. Properties of soybean protein isolate/curdlan based emulsion gel for fat analogue: Comparison with pork backfat. International Journal of Biological Macromolecules 2022, 206, 481-488. Degner, B. M.; Chung, C.; Schlegel, V.; Hutkins, R.; McClements, D. J. Factors influencing the freeze‐thaw stability of emulsion‐based foods. Comprehensive Reviews in Food Science and Food Safety 2014, 13, 98-113. Dickinson, E. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science & Technology 2012, 24, 4-12. Du, K.; Glogowski, E.; Emrick, T.; Russell, T. P.; Dinsmore, A. D. Adsorption energy of nano-and microparticles at liquid− liquid interfaces. Langmuir 2010, 26, 12518-12522. Ellis, A.; Mills, T.; Norton, I.; Norton-Welch, A. The effect of sugars on agar fluid gels and the stabilisation of their foams. Food Hydrocolloids 2019, 87, 371-381. Fan, Y.; Yi, J.; Zhang, Y.; Wen, Z.; Zhao, L. Physicochemical stability and in vitro bioaccessibility of β-carotene nanoemulsions stabilized with whey protein-dextran conjugates. Food Hydrocolloids 2017, 63, 256-264. Fioramonti, S. A.; Arzeni, C.; Pilosof, A. M.; Rubiolo, A. C.; Santiago, L. G. Influence of freezing temperature and maltodextrin concentration on stability of linseed oil-in-water multilayer emulsions. Journal of Food Engineering 2015, 156, 31-38. French, D. J.; Fowler, J.; Taylor, P.; Clegg, P. S. Influence of salt concentration on the formation of Pickering emulsions. Soft Matter 2020, 16, 7342-7349. Ge, S.; Xiong, L.; Li, M.; Liu, J.; Yang, J.; Chang, R.; Liang, C.; Sun, Q. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size. Food chemistry 2017, 234, 339-347. Gee, G. W.; Bauder, J. W. Particle‐size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods 1986, 5, 383-411. George, R. Freezing proceseses used in the food industry. Trends in Food Science & Technology 1993, 4, 134-138. Gerasimov, A.; Eremina, O.; Cherkasova, M.; Dmitriev, S. In Application of particle-size analysis in various industries, Journal of Physics: Conference Series, 2021; IOP Publishing: 2021; p 012003. Ghosh, S.; Coupland, J. N. Factors affecting the freeze–thaw stability of emulsions. Food Hydrocolloids 2008, 22, 105-111. Guo, X.; Wu, D.; Zhou, B.; Chen, Z.; Li, B.; Wang, S.; Pei, Y.; Li, B.; Liang, H. Reinforced pickering emulsions stabilized by desalted duck egg white nanogels with Ca2+ as binding agents. Food Hydrocolloids 2021, 121, 106974. Hadamard, M. Mouvement permanent lent d'une sphere liquide et visqueuse dans un liquid visqueux. Compt. Rend. Acad. Sci. 1911, 152, 1735-1738. He, L.; Lin, F.; Li, X.; Sui, H.; Xu, Z. Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chemical Society Reviews 2015, 44, 5446-5494. Huang, Z.; Huang, X.; Zhou, W.; Zhang, L.; Liu, F.; Li, J.; Peng, S.; Cao, Y.; Li, Y.; Li, R. Fabrication and stability of Pickering emulsions using moringa seed residue protein: Effect of pH and ionic strength. International Journal of Food Science & Technology 2021, 56, 3484-3494. Inami, T.; Tanimoto, Y.; Minami, N.; Yamaguchi, M.; Kasai, K. Color stability of laboratory glass-fiber-reinforced plastics for esthetic orthodontic wires. The Korean Journal of Orthodontics 2015, 45, 130-135. James, C.; Purnell, G.; James, S. J. A review of novel and innovative food freezing technologies. Food and Bioprocess Technology 2015, 8, 1616-1634. James, S.; James, C. Food Technologies: Freezing. 2014. Kroetsch, D.; Wang, C. Particle size distribution. Soil sampling and methods of analysis 2008, 2, 713-725. Kutzli, I.; Weiss, J.; Gibis, M. Glycation of plant proteins via maillard reaction: reaction chemistry, technofunctional properties, and potential food application. Foods 2021, 10, 376. Lauková, M.; Kohajdová, Z.; Karovičová, J.; Kuchtová, V.; Minarovičová, L.; Tomášiková, L. Effects of cellulose fiber with different fiber length on rheological properties of wheat dough and quality of baked rolls. Food Science and Technology International 2017, 23, 490-499. Leschonski, K. Representation and evaluation of particle size analysis data. Particle & Particle Systems Characterization 1984, 1, 89-95. Li, B.; Bao, Z.; Xu, W.; Chi, Y. Influence of glycation extent on the physicochemical and gelling properties of soybean β-conglycinin. European Food Research and Technology 2015, 240, 399-411. Li, W.; Jiao, B.; Li, S.; Faisal, S.; Shi, A.; Fu, W.; Chen, Y.; Wang, Q. Recent advances on pickering emulsions stabilized by diverse edible particles: Stability mechanism and applications. Frontiers in nutrition 2022, 9, 864943. Liu, F.; Tang, C.-H. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions. Journal of agricultural and food chemistry 2013, 61, 8888-8898. Liu, F.; Tang, C.-H. Soy glycinin as food-grade Pickering stabilizers: Part. II. Improvement of emulsification and interfacial adsorption by electrostatic screening. Food hydrocolloids 2016, 60, 620-630. Lu, Y.; Li, Y.; Wu, W. Injected nanocrystals for targeted drug delivery. Acta Pharmaceutica Sinica B 2016, 6, 106-113. Martinez-Alvarenga, M.; Martinez-Rodriguez, E.; Garcia-Amezquita, L.; Olivas, G.; Zamudio-Flores, P.; Acosta-Muniz, C.; Sepulveda, D. Effect of Maillard reaction conditions on the degree of glycation and functional properties of whey protein isolate–Maltodextrin conjugates. Food Hydrocolloids 2014, 38, 110-118. Maskan, M.; Göǧüş, F. Effect of sugar on the rheological properties of sunflower oil–water emulsions. Journal of food engineering 2000, 43, 173-177. Mikami, Y.; Murata, M. Effects of sugar and buffer types, and pH on formation of Maillard pigments in the lysine model system. Food Science and Technology Research 2015, 21, 813-819. Montenegro V, J. R.,Freeze-thaw stability of oil-in-water emulsion stabilized by nanocelluloses,Zamorano: Escuela Agrícola Panamericana, 2019.,2019。 Morell, P.; López-García, A.; Hernando, I.; Quiles, A. Improving Pea Protein Emulsifying Capacity by Glycosylation to Prepare High-Internal-Phase Emulsions. Foods 2023, 12, 870. Ninomiya, K.; Ina, S.; Nakamura, H.; Yamaguchi, Y.; Kumagai, H.; Kumagai, H. Evaluation of the amount of glucose adsorbed on water-soluble dietary fibres by the analysis of its diffusion rate through a dialysis membrane. Food Hydrocolloids 2022, 129, 107626. Osswald, T.; Rudolph, N. Polymer rheology. Carl Hanser, München 2015. Pal, R.; Rhodes, E. A novel viscosity correlation for non-Newtonian concentrated emulsions. Journal of Colloid and Interface Science 1985, 107, 301-307. Palazolo, G. G.; Sobral, P. A.; Wagner, J. R. Freeze-thaw stability of oil-in-water emulsions prepared with native and thermally-denatured soybean isolates. Food Hydrocolloids 2011, 25, 398-409. Pate, K.; Safier, P., 12-Chemical metrology methods for CMP quality. Advances in Chemical Mechanical Planarization (CMP). In von S. Babu. Woodhead Publishing: 2016. Patel, A.; Longmore, N.; Mohanan, A.; Ghosh, S. Salt and pH-induced attractive interactions on the rheology of food protein-stabilized nanoemulsions. ACS omega 2019, 4, 11791-11800. Patel, A. R.; Nicholson, R. A.; Marangoni, A. G. Applications of fat mimetics for the replacement of saturated and hydrogenated fat in food products. Current Opinion in Food Science 2020, 33, 61-68. Rayner, M.; Sjöö, M.; Timgren, A.; Dejmek, P. Quinoa starch granules as stabilizing particles for production of Pickering emulsions. Faraday discussions 2012, 158, 139-155. Rezaee, M.; Aider, M. Potential Use of Nonanimal-Based Biopolymers as Gelling/Emulsifying Stabilizing Agents to Reduce the Fat Content in Foods: A Review. ACS Food Science & Technology 2022, 2, 751-762. Ribeiro, A.; Lopes, J. C. B.; Dias, M. M.; Barreiro, M. F. Pickering Emulsions Based in Inorganic Solid Particles: From Product Development to Food Applications. Molecules 2023, 28, 2504. Ribeiro, E.; Morell, P.; Nicoletti, V.; Quiles, A.; Hernando, I. Protein-and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocolloids 2021, 119, 106839. Rizzi, G. P. Role of Phosphate and Carboxylate Ions in Maillard Browning. Journal of Agricultural and Food Chemistry 2004, 52, 953-957. Rybczynski, W. Uber die fortschreitende Bewegung einer flussigen Kugel in einem zahen Medium. Bull. Acad. Sci. Cracovie A 1911, 1, 40-46. Servais, C.; Jones, R.; Roberts, I. The influence of particle size distribution on the processing of food. Journal of food engineering 2002, 51, 201-208. Shafiei, M.; Kazemzadeh, Y.; Martyushev, D. A.; Dai, Z.; Riazi, M. Effect of chemicals on the phase and viscosity behavior of water in oil emulsions. Scientific Reports 2023, 13, 4100. Shi, A.; Feng, X.; Wang, Q.; Adhikari, B. Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocolloids 2020, 109, 106117. Sun, X.; Cui, Q.; Li, R.; Hao, L.; Liu, H.; Wang, X.; Xu, N.; Zhao, X. Structural and emulsifying properties of soybean protein isolate glycated with glucose based on pH treatment. Journal of the Science of Food and Agriculture 2022a, 102, 4462-4472. Sun, X.; Cui, Q.; Li, R.; Hao, L.; Liu, H.; Wang, X.; Xu, N.; Zhao, X. Structural and emulsifying properties of soybean protein isolate glycated with glucose based on pH treatment. Journal of the Science of Food and Agriculture 2022b. Sutton, A. P.; Sutton, A. P., 1When is a material stable? In Concepts of Materials Science, Oxford University Press: 2021; p 0. Tas, O.; Ertugrul, U.; Oztop, M. H.; Mazi, B. G. Glycation of soy protein isolate with two ketoses: d‐Allulose and fructose. International Journal of Food Science & Technology 2021, 56, 5461-5470. Thanasukarn, P.; Pongsawatmanit, R.; McClements, D. J. Utilization of layer-by-layer interfacial deposition technique to improve freeze–thaw stability of oil-in-water emulsions. Food research international 2006, 39, 721-729. Tu, Y.; Zhang, X.; Wang, L. Effect of salt treatment on the stabilization of Pickering emulsions prepared with rice bran protein. Food Research International 2023, 166, 112537. Wang, R.; Hartel, R. W. Confectionery gels: Gelling behavior and gel properties of gelatin in concentrated sugar solutions. Food Hydrocolloids 2022, 124, 107132. Wang, T.; Li, F.; Zhang, H.; Feng, W.; Wang, R. Plant-based high internal phase emulsions stabilized by dual protein nanostructures with heat and freeze–thaw tolerance. Food Chemistry 2022, 373, 131458. Washington, C., Particle Size Analysis In Pharmaceutics And Other Industries: Theory And Practice: Theory And Practice. CRC Press: 1992. Weiss, J.; Ahmad, T.; Zhang, C.; Zhang, H. A review of recent progress on high internal-phase Pickering emulsions in food science. Trends in Food Science & Technology 2020, 106, 91-103. Wiącek, A.; Chibowski, E. Zeta potential, effective diameter and multimodal size distribution in oil/water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999, 159, 253-261. Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The lancet 2019, 393, 447-492. Xu, D.; Zhang, J.; Cao, Y.; Wang, J.; Xiao, J. Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion. LWT-Food Science and Technology 2016, 66, 590-597. Xu, Y.-T.; Tang, C.-H.; Binks, B. P. High internal phase emulsions stabilized solely by a globular protein glycated to form soft particles. Food Hydrocolloids 2020, 98, 105254. Yan, X.; Ma, C.; Cui, F.; McClements, D. J.; Liu, X.; Liu, F. Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods. Trends in Food Science & Technology 2020, 103, 293-303. Yang, F.; Liu, S.; Xu, J.; Lan, Q.; Wei, F.; Sun, D. Pickering emulsions stabilized solely by layered double hydroxides particles: The effect of salt on emulsion formation and stability. Journal of Colloid and Interface Science 2006, 302, 159-169. Yu, J.; Wang, Y.; Li, D.; Wang, L.-j. Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl. Food Hydrocolloids 2022, 123, 107113. Zha, F.; Dong, S.; Rao, J.; Chen, B. Pea protein isolate-gum Arabic Maillard conjugates improves physical and oxidative stability of oil-in-water emulsions. Food Chemistry 2019, 285, 130-138. Zhang, H.; Zhang, F.; Yuan, R., Applications of natural polymer-based hydrogels in the food industry. In Hydrogels based on natural polymers, Elsevier: 2020a; pp 357-410. Zhang, Q.; Long, X.; Xie, J.; Xue, B.; Li, X.; Gan, J.; Bian, X.; Sun, T. Effect of d-galactose on physicochemical and functional properties of soy protein isolate during Maillard reaction. Food Hydrocolloids 2022, 133, 107914. Zhang, S.; Holmes, M.; Ettelaie, R.; Sarkar, A. Pea protein microgel particles as Pickering stabilisers of oil-in-water emulsions: Responsiveness to pH and ionic strength. Food Hydrocolloids 2020b, 102, 105583. Zhang, T.; Xu, J.; Chen, J.; Wang, Z.; Wang, X.; Zhong, J. Protein nanoparticles for Pickering emulsions: A comprehensive review on their shapes, preparation methods, and modification methods. Trends in Food Science & Technology 2021, 113, 26-41. Zhang, Z.; Wang, X.; Yu, J.; Chen, S.; Ge, H.; Jiang, L. Freeze-thaw stability of oil-in-water emulsions stabilized by soy protein isolate-dextran conjugates. LWT 2017, 78, 241-249. Zhu, X.-F.; Zheng, J.; Liu, F.; Qiu, C.-Y.; Lin, W.-F.; Tang, C.-H. The influence of ionic strength on the characteristics of heat-induced soy protein aggregate nanoparticles and the freeze–thaw stability of the resultant Pickering emulsions. Food & function 2017, 8, 2974-2981. Zhu, X.-F.; Zheng, J.; Liu, F.; Qiu, C.-Y.; Lin, W.-F.; Tang, C.-H. Freeze-thaw stability of Pickering emulsions stabilized by soy protein nanoparticles. Influence of ionic strength before or after emulsification. Food Hydrocolloids 2018, 74, 37-45. Zhu, Y.; McClements, D. J.; Zhou, W.; Peng, S.; Zhou, L.; Zou, L.; Liu, W. Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of Pickering emulsion gels. Food chemistry 2020, 303, 125401. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89338 | - |
| dc.description.abstract | 植物肉是近期食品產業中的重要趨勢之一,如今以植物模擬肉品蛋白質的技術已十分成熟,然而油脂部分的模擬則尚在發展中,動物脂肪因為是油脂儲存於細胞中的構造,與植物油脂之性質相當不同,現今的植物肉如漢堡排等產品往往使用飽和脂肪酸含量較高之植物油脂,如棕櫚油、可可油或椰子油等,模擬真實肥肉脂肪在漢堡排表面的白色顆粒或紋路感。然而,植物油脂與動物脂肪不同,其在經過加熱後,會直接融化成液態進而流失,可能造成產品外觀在烹調後形成視覺不佳的孔洞,甚或影響質地及適口性。因此,有必要針對植物肉之脂肪部分進行相關的模擬及測試,以解決此一問題。本研究採皮克林乳化技術為研究平台,並搭配水膠以模擬漢堡排中肥肉脂肪結構與口感,期許其能因良好的抓水能力提供足夠之凍融穩定性,以應用於冷凍食品中,並測試經此方式製作出的樣品之各項物化性質,以確定其質地特性及安定性。
乳化穩定性的結果顯示,在油水比(φ) 0.6、均質時間5 min、轉速12,000 rpm,以及穩定劑-大豆蛋白(soy protein isolate, SPI)濃度為3%,並添加40 mM NaCl的條件下,製備的乳液穩定性最佳。然而,經過測試發現此乳液凍融穩定性不佳,因此嘗試了將大豆蛋白醣基化(gSPI)作為穩定劑使用,然測試其凍融性亦無法達標。基此,轉於卡德蘭膠之製膠製程中,摻混介質研磨纖維素(media-milled cellulose, MC),期待能使脂肪模擬物凍融穩定性的提升。結果顯示,SPI組別脂肪模擬物其整體凍融穩定性效果會較gSPI組別佳,而在SPI組別中,卡德蘭膠搭配5% 5 min MC組、3% 60 min MC組及5% 60 min MC組在三次凍融循環下相較他組能表現較佳凍融穩定性,其在三次循環後可維持穩定性在89%以上。 經流變試驗及油煎試驗可見脂肪模擬物的熱穩定性良好,因此推測,將脂肪模擬物添加到漢堡排中,可以成功模擬動物肥肉的外觀,呈現出白色顆粒狀,並且不會隨烹煮溫度升高而流失造成孔洞。而油煎測試結果顯示3% 60 min MC添加組別的油、水釋放的情況更好,顯示此組樣品可能相對可以提供較佳的多汁性及濕潤性口感。 | zh_TW |
| dc.description.abstract | Plant-based meat is one of the prominent trends in the food industry in recent years. The technology for producing plant-based protein that mimics meat has become highly advanced. However, the simulation of fats is still under development. Animal fats, being stored in cells, have different properties compared to plant fats. Current plant-based meats, such as burgers, often use plant oils with a higher saturated fatty acid content, such as palm oil, cocoa butter, or coconut oil, to simulate the white specks or marbling of real fatty meat on the surface of the burger patty. However, plant fats behave differently from animal fats. When heated, plant fats tend to melt into a liquid and may cause undesirable cavities in the product's appearance. Therefore, it is necessary to conduct relevant simulations and tests specifically for the plant-based fat component to address this issue. This study adopted the Pickering emulsion technique as a research platform and combines hydrogels to simulate the structure and texture of fatty meat in burger patties. With their good water-holding capacity, it was expected that the hydrogels will provide sufficient freeze-thaw stability for application in frozen foods. The physicochemical properties of the samples produced by this method were tested to determine their texture characteristics and stability.
The results showed that the best stability of the emulsion is achieved at an oil-water ratio (φ) of 0.6, a homogenization time of 5 minutes with rotational speed of 12,000 rpm, stabilizer concentration of 3%, and the addition of 40 mM NaCl. However, it was found that the emulsion did not exhibit freeze-thaw stability. Therefore, glycated soy protein isolate (gSPI) was attempted as a stabilizer but failed to meet the freeze-thaw stability requirements. In further processing, media-milled cellulose (MC) was added during the processing of gel preparation with curdlan, aiming to improve the freeze-thaw stability of the oil-gel system. The results showed that the overall freeze-thaw stability of the SPI (soy protein isolate) group was better than that of the gSPI (glycated soy protein isolate) group. Within the SPI group, the curdlan combined with 5% 5-min-MC, 3% 60-min-MC, and 5% 60-min-MC exhibited better freeze-thaw stability after three cycles, maintaining the freeze-thaw stability above 89%. Rheological and pan-frying tests showed that the fat analogue had good thermal stability. Therefore, it is speculated that by adding the fat analogue to burger patties, it can successfully simulate the appearance of animal fat, presenting a white speckled appearance without losing integrity or creating holes as the cooking temperature rises. The pan-frying test results showed that the group with 3% 60-min-MC addition had better release of oil and water, indicating that this sample group may provide better juiciness and moistness in terms of texture. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T16:35:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-07T16:35:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv Abstract v 圖目錄 ix 表目錄 x 壹、前言 1 貳、文獻回顧 3 參、實驗架構 20 一、大豆分離蛋白懸浮液製備 20 二、醣基化大豆分離蛋白懸浮液製備 21 三、脂肪模擬物製備 22 肆、材料與方法 23 一、實驗材料 23 二、實驗試藥 23 三、 儀器設備 23 (一) 脂肪模擬物製備相關 23 (二) 乳液特性分析相關 24 (三) 脂肪模擬物特性分析相關 24 四、實驗方法 25 (一) 脂肪模擬物製備 25 (二) 乳液特性分析 26 (三) 脂肪模擬物特性分析 28 (四) 數據統計分析 30 伍、結果與討論 31 (一) 脂肪模擬物製備 31 1. 大豆分離蛋白懸浮液製備 31 2. 醣基化大豆分離蛋白懸浮液製備 31 3. 乳液製備 33 4. 膠體製備 35 (二) 乳液性質分析 36 1. 粒徑測定 36 2. 離心加速試驗 43 3. 黏度測定 45 4. 界達電位測定 46 5. 凍融穩定性測定 47 (三) 脂肪模擬物性質分析 49 1. 凍融穩定性測定 49 2. 色澤分析 52 3. 質地分析 55 4. 流變性質分析 59 5. 油煎試驗 62 陸、結論 64 柒、未來研究方向 65 捌、參考文獻 66 玖、附錄 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 水膠 | zh_TW |
| dc.subject | 凍融穩定性 | zh_TW |
| dc.subject | 脂肪模擬物 | zh_TW |
| dc.subject | 皮克林乳液 | zh_TW |
| dc.subject | 研磨纖維素 | zh_TW |
| dc.subject | Pickering emulsion | en |
| dc.subject | freeze-thaw stability | en |
| dc.subject | fat analogue | en |
| dc.subject | media milled cellulose | en |
| dc.subject | hydrogel | en |
| dc.title | 皮克林乳液結合水膠製備凍融穩定性脂肪模擬物 | zh_TW |
| dc.title | Preparation of plant-based meat fat analog with freeze-thaw stability through Pickering emulsions and hydrogels | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 蔣丙煌 | zh_TW |
| dc.contributor.coadvisor | Been-Huang Chiang | en |
| dc.contributor.oralexamcommittee | 吳俊毅;謝雯婷 | zh_TW |
| dc.contributor.oralexamcommittee | Jiumn-Yih Wu;Wen-Ting Hsieh | en |
| dc.subject.keyword | 皮克林乳液,水膠,脂肪模擬物,凍融穩定性,研磨纖維素, | zh_TW |
| dc.subject.keyword | Pickering emulsion,hydrogel,fat analogue,freeze-thaw stability,media milled cellulose, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202303163 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
