Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89087
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃育熙zh_TW
dc.contributor.advisorYu-Hsi Huangen
dc.contributor.author林家雋zh_TW
dc.contributor.authorChia-Chun Linen
dc.date.accessioned2023-08-16T17:04:36Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation[1] W. H. Peters and W. F. Ranson. “Digital imaging techniques in experimental stress analysis”, Optical Engineering, vol. 21, no. 3, p. 213427, 1982.
[2] M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson and S. R. McNeill, “Determination of displacements using an improved digital correlation method”, Image and Vision Computing, vol. 1, no. 3, pp. 133-139, 1983.
[3] W. H. Peters, W. F. Ranson, M. A. Sutton, T. C. Chu and J. Anderson,” Application of digital correlation methods to rigid body mechanics”, Optical Engineering, vol. 22, no. 6, p. 226738, 1983.
[4] T. C. Chu, W. F. Ranson, and M. A. Sutton, “Applications of digital image correlation techniques to experimental mechanics”, Experimental Mechanics, vol. 25, no. 3, pp. 232-244, 1985.
[5] M. A. Sutton, C. Mingqi, W. H. Peters, Y. J. Chao and S. R. McNeill, “Application of an optimized digital correlation method to planar deformation analysis”, Image and Vision Computing, vol. 4, no. 3, pp. 143-150. 1986.
[6] H. A. Bruck, S. R. McNeill, M. A. Sutton and W. H. Peters Iii, “Digital image correlation using Newton-Raphson method of partial differential correction”, Experimental Mechanics, vol. 29, no. 3, pp. 261-267, 1989.
[7] B. Pan, H. M. Xie, B. Q. Xu and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Measurement Science and Technology vol. 17, no. 6, p. 1615, 2006.
[8] G. Vendroux and W. G. Knauss, “Submicron deformation field measurements: Part 2. Improved digital image correlation”, Experimental Mechanics, vol. 38, no. 2, pp. 86-92, 1998.
[9] H. Lu and P. D. Cary, “Deformation measurements by digital image correlation: implementation of a second-order displacement gradient”, Experimental Mechanics, vol. 40, no. 4, pp. 393-400, 2000.
[10] B. Pan, H. Xie, and Z. Wang, "Equivalence of digital image correlation criteria for pattern matching", Applied Optics, vol. 49, pp. 5501-5509, 2010.
[11] B. Pan, “Recent progress in digital image correlation”, Experimental Mechanics, vol. 51, no.7 pp. 1223-1235, 2011.
[12] S. Baker and I. Matthews, “Equivalence and efficiency of image alignment algorithms”, In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on IEEE, vol. 1, pp. I-1090, 2001.
[13] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework,” International Journal of Computer Vision, vol. 56, no. 3, pp. 221-255, 2004.
[14] B. Pan, K. Li and W. Tong, “Fast, robust and accurate digital image correlation calculation without redundant computations,” Experimental Mechanics, vol. 53, no. 7, pp. 1277-1289, 2013.
[15] B. Pan, “An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss–Newton algorithm,” Strain, vol. 50, no. 1, pp. 48-56, 2014.
[16] Y. Gao, T. Cheng, Y. Su, X. Xu, Y. Zhang and Q. Zhang, “High-efficiency and high-accuracy digital image correlation for three-dimensional measurement,” Optics and Lasers in Engineering, vol. 65, pp. 73-80, 2015.
[17] Y. Lin, and Z. Lan, "Sub-pixel displacement measurement in digital image correlation using particle swarm optimization." 2010 International Conference on Information, Networking and Automation (ICINA). Vol. 2. IEEE, 2010.
[18] X. Shao, et al. "Digital image correlation with improved efficiency by pixel selection." Applied optics 59.11 (2020): 3389-3398.
[19] Z. L. Kahn-Jetter and T. C. Chu, “Three-dimensional displacement measurements using digital image correlation and photogrammic analysis,” Experimental Mechanics, vol. 30, no. 1, pp. 10-16, 1990.
[20] P. F. Luo, et al. “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Experimental Mechanics, vol. 33, no. 2, pp. 123-132, 1993.
[21] V. Tiwari, et al.“Application of 3D image correlation for full-field transient plate deformation measurements during blast loading,” International Journal of Impact Engineering, vol. 36, no. 6, pp. 862-874, 2009.
[22] M. N. Helfrick, C. Niezrecki, P. Avitabile and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mechanical Systems and Signal Processing, vol. 25, no. 3, pp. 917-927, 2011.
[23] C. Warren, C. Niezrecki, P. Avitabile, and P. Pingle, “Comparison of FRF measurements and mode shapes determined using optically image based, laser, and accelerometer measurements,” Mechanical Systems and Signal Processing, vol. 25, no. 6, pp. 2191-2202, 2011.
[24] W. Wang, J. E. Mottershead, T. Siebert, and A. Pipino, “Frequency response functions of shape features from full-field vibration measurements using digital image correlation,” Mechanical Systems and Signal Processing, vol. 28, pp. 333-347, 2012.
[25] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22(11), pp. 1330-1334, 2000.
[26] C. Harris, and M. Stephens, "A combined corner and edge detector." Alvey vision conference. Vol. 15. No. 50. 1988.
[27] K. Mikolajczyk, and C. Schmid, "Scale & affine invariant interest point detectors." International journal of computer vision 60 (2004): 63-86.
[28] L. David, "Distinctive image features from scale-invariant keypoints." International journal of computer vision 60 (2004): 91-110.
[29] C. Lane, R. L. Burguete, and A. Shterenlikht. "An objective criterion for the selection of an optimum DIC pattern and subset size." Proceedings of the XIth international congress and exposition. 2008.
[30] R. Pereira, et al. "Energy efficiency across programming languages: how do energy, time, and memory relate?." Proceedings of the 10th ACM SIGPLAN international conference on software language engineering. 2017
[31] 陳亮至,馬劍清,「建構立體數位影像相關法之基礎理論並應用於結構靜態與動態三維變形精密量測」,碩士論文,機械工程學研究所,臺灣大學,2016。
[32] 王盛儀,馬劍清,「數位影像相關法於二維軌跡及變形量測和應用於建構立體形貌」,碩士論文,機械工程學研究所,臺灣大學,2018。
[33] 李宇倫,馬劍清,「提升數位影像相關法的量測精度並應用於車輛追蹤與機械手臂的三維量測」,碩士論文,機械工程學研究所,臺灣大學,2020。
[34] 李霽儒,馬劍清,「提升數位影像相關法效能並應用於跨尺度動態問題量測與機械手臂之系統整合」,碩士論文,機械工程學研究所,臺灣大學,2021。
[35] 陳義翔,馬劍清,「提升數位影像相關法的量測精度並應用於車輛追蹤與機械手臂的三維量測」,碩士論文,機械工程學研究所,臺灣大學,2020。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89087-
dc.description.abstract數位影像相關法(Digital image correlation, DIC)是一種非接觸式全場量測的影像光學量測技術,常應用在跨尺度量測的工程領域及實驗力學的學術研究上。數位影像相關法可以透過影像追蹤待測物上的特徵,將作為特徵的樣板子集合與拍攝的影像序列進行相關係數(Normalized cross correlation, NCC)的計算,再搭配次像素(Sub-pixel)演算法,獲得高精度的位移、速度及應變等多種物理量。
實驗上有時需要量測試片上確切位置的位移或位移,會以圓形斑點作為特徵,而在定義欲追蹤的樣板影像時,經常是以人工方式選取特徵點再獲取樣板影像,但當需要同時追蹤多點特徵時,便需要花費大量的時間選取特徵。為了在各種影像中自動擷取特徵,本文使用影像處理及邊緣偵測的方法加強並擷取所有特徵,再利用大津演算法(Otsu’s method)來過濾並保留位於前景的特徵,最後以特徵周圍的亮度值來篩選特徵,獲取最終的樣板影像。
本文也提出在數位影像相關法中,以計算出的相關係數值為基準來進行樣板影像的更新,以減少反向合成高斯牛頓法(Inverse compositional Gauss-Newton method, ICGN method)迭代運算時所需的迭代次數,同時加入像素選擇策略來減少計算所需的像素數量,先以電腦生成斑點影像測試不同參數設定的精度及計算效率,也藉由拍攝懸臂薄板振動、黏彈性材料的拉伸及鋼珠落擊薄膜等實驗,分別探討穩態振動的條件、特徵具有大變化的準靜態大變形、以及高速衝擊下的暫態變化,驗證處理實際拍攝影像時,此方法對於提升運算速度以及量測準確度的影響,除了能夠量測較大應變的情形,對於DIC系統解析連續影像變化的強韌度亦於本研究有所貢獻。
zh_TW
dc.description.abstractDigital Image Correlation (DIC) is a non-contact, optical measurement technique for full-field measurement. It is commonly used in engineering for measuring across different scales and in academic research for experimental mechanics. DIC can track features on the test object through image tracking and calculate the correlation coefficient by normalized cross correlation (NCC) between the template image and the captured image sequence of the feature. Combined with sub-pixel algorithms, DIC can obtain high-precision physical quantities such as displacement, velocity, and strain.
When experiments require measuring the exact displacement of a specimen, it is often necessary to manually select feature points to define the template image. As tracking multiple feature points, selecting features might be time-consuming. To automatically capture features from various images, image processing and edge detection methods are used to enhance and capture all features. The Otsu method is then used to filter and retain foreground features, and the brightness values around the features are used to select the final template image.
This thesis proposes using correlation coefficients to determine whether to update the template subset when calculating the inverse-compositional Gauss-Newton method (ICGN). Additionally, a pixel selection strategy is introduced to decrease the number of pixels involved in the calculations. The improvement in accuracy and speed was tested using computer-generated speckle images with different parameter settings. This method is tested in the experiment by the images from vibration, quasi-static tensile test, and high-speed impact. A cantilevered plate tests the steady-state dynamics. The viscoelastic material is tested by tensile test at various speeds. A high-speed steel ball impacts the large deformation of a polymer membrane. The results show to improve computation speed and measures more enormous strains effectively.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:04:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:04:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
致謝 II
摘要 III
Abstract IV
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 內容簡介 4
第二章 數位影像相關法基本原理與實驗儀器 7
2.1 數位影像相關法簡介 7
2.1.1 數位影像相關法基本原理 7
2.1.2 空間參數 8
2.1.3 時間參數 9
2.1.4 樣板子集合與半窗格 10
2.1.5 搜尋子集合與搜尋窗格 11
2.1.6 形狀函數 12
2.2 數位影像相關法計算方法 15
2.2.1 相關係數值 15
2.2.2 相關係數極值搜尋法 18
2.2.3 牛頓拉福森法 20
2.2.4 正向疊加牛頓拉福森法 23
2.2.5 反向合成高斯牛頓法 26
2.3 數位影像相關法種類 30
2.3.1 二維數位影像相關法 30
2.3.2 立體數位影像相關法 32
2.4 實驗儀器介紹 39
2.4.1 數位工業相機 39
2.4.2 高速攝影機 39
2.4.3 數位工業相機鏡頭 39
2.4.4 雷射都卜勒振動儀 40
2.4.5 全域振動量測系統 40
2.4.6 振動器 41
第三章 數位影像相關法之自動特徵擷取 50
3.1 特徵獲取 50
3.1.1 影像前處理 52
3.1.2 強化邊緣特徵偵測 56
3.1.3 圓形霍夫轉換(Circle Hough transform, CHT) 59
3.2 特徵篩選 63
3.2.1 大津演算法(Ostu’s method) 64
3.2.2 亮度值之離群值移除 66
第四章 數位影像相關法之效能提升 71
4.1 電腦生成之斑點影像 71
4.2 更新樣板子集合(Update Template, UT) 72
4.2.1 應變公式轉換 72
4.2.2 更新樣板子集合之閾值設定 74
4.2.3 輸入影像尺寸探討 75
4.3 像素選擇策略(Pixel Selection Strategy, PS) 76
4.4 時間序影像測試 78
4.4.1 半窗格測試 78
4.4.2 搜尋窗格測試 79
4.4.3 多點追蹤測試 80
第五章 位移與應變量測驗證 97
5.1 振動量測 97
5.2 拉伸試驗量測 100
5.3 鋼珠落擊薄膜實驗量測 102
第六章 結論與未來展望 127
6.1 結論 127
6.2 未來展望 129
Reference 130
-
dc.language.isozh_TW-
dc.subject特徵擷取zh_TW
dc.subject數位影像相關法zh_TW
dc.subject影像處理zh_TW
dc.subject樣板子集合zh_TW
dc.subjectDigital image correlationen
dc.subjectImage processingen
dc.subjectFeature extractionen
dc.subjectTemplate subseten
dc.title數位影像相關法之自動特徵擷取及計算效能提升zh_TW
dc.titleAutomatic Feature Extraction and Improving Computing Speed of Digital Image Correlationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭志鈞;吳亦莊zh_TW
dc.contributor.oralexamcommitteeChih-Chun Cheng;Yi-Zhuang Wuen
dc.subject.keyword數位影像相關法,影像處理,特徵擷取,樣板子集合,zh_TW
dc.subject.keywordDigital image correlation,Image processing,Feature extraction,Template subset,en
dc.relation.page132-
dc.identifier.doi10.6342/NTU202303196-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf15.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved