Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89086
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃育熙zh_TW
dc.contributor.advisorYu-Hsi Huangen
dc.contributor.author李明杰zh_TW
dc.contributor.authorMing-Chieh Leeen
dc.date.accessioned2023-08-16T17:04:21Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] S. Y. Wang, “A finite element model for the static and dynamic analysis of a piezoelectric bimorph.”, International Journal of Solids and Structures, 41(15), pp. 4075-4096, 2004
[2] C. C. Ma, Y. C. Lin, Y. H. Huang, and H. Y. Lin, “Experimental measurement and numerical analysis on resonant characteristics of cantilever plates for piezoceramic bimorphs.”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 54(2), pp. 227-239, 2007.
[3] A. Erturk, D. J. Inman, “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations.”, Smart Materials and Structures, 18(2), 025009, 2009.
[4] Y. H. Huang, C. C. Ma, “Experimental and numerical investigations of vibration characteristics for parallel-type and series-type triple-layered piezoceramic bimorphs.”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 56(12), pp. 2598-2611, 2009.
[5] Y. C. Shu, I. C. Lien, W. J. Wu, “An improved analysis of the SSHI interface in piezoelectric energy harvesting.”, Smart Materials and Structures, 16(6), 2253, 2007
[6] Y. K. Ramadass, A. P. Chandrakasan, “An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor.”, IEEE journal of solid-state circuits, 45(1), pp. 189-204, 2009
[7] H. C. Lin, P. H. Wu, I. C. Lien, Y. C. Shu, ”Analysis of an array of piezoelectric energy harvesters connected in series.”, Smart Materials and Structures, 22(9),094026, 2013.
[8] E. S. Leland, P. K. Wright, “Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload.”, Smart Materials and Structures, 15(5), 1413, 2006.
[9] H. Xue, Y. Hu, Q. M. Wang, “Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies.”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 55(9), pp. 2104-2108, 2008.
[10] D. Zhu, S. Roberts, J. Tudor, S. Beeby, “Closed loop frequency tuning of a vibration-based micro-generator.”, 2008.
[11] J. T. Lin, B. Lee, B. Alphenaar, “The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency.”, Smart Materials and Structures, 19(4), 045012, 2010.
[12] 鄭雅倫,趙振綱,黃育熙,「串聯型三層壓電雙晶片於電極設計搭配模態振形之能量截取效率提升」,國立台灣科技大學機械工程學系碩士論文,2016。
[13] 周聖倫,黃育熙,「壓電能量擷取系統以邊界設計方法降低共振頻率之研究」,國立臺灣科技大學機械工程所碩士論文,2017。
[14] 陳新承,黃育熙,「可變剛性邊界應用於壓電平板理論之能量擷取系統」,國立臺灣大學機械工程所碩士論文,2021
[15] F.J. Shaker, “Effects of axial load on mode shapes and frequencies of beams”, NASA Lewis Research Centre Report NASA-TN-8109, pp. 1-25, 1975
[16] A. W. Leissa, “Vibration of plates, NASA SP-160.”, National Aeronautics and Space Administration, Washington DC, 1969
[17] D. J. Gorman, “Free vibration analysis of the completely free rectangular plate by the method of superposition.”, Journal of Sound and Vibration, 57(3), pp. 437-447, 1978.
[18] C. S. Kim, P. G. Young, S. M. Dickinson, “On the flexural vibration of rectangular plates approached by using simple polynomials in the Rayleigh-Ritz method.”, Journal of Sound and Vibration, 143(3), pp. 379-394, 1990.
[19] D. J. Gorman, “Free vibration and buckling of in-plane loaded plates with rotational elastic edge support.”, Journal of Sound and Vibration, 229(4), pp. 755-773, 2000.
[20] 吳亦莊,馬劍清,「理論解析與實驗量測壓電平板的面外振動及特性探討」,國立臺灣大學機械工程所碩士論文,2009。
[21] X. He, G. D. Doolen, T. Clark, “Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier–Stokes equations.”, Journal of Computational Physics, 179(2), pp. 439-451, 2002
[22] H. Zhou, G. Mo, F. Wu, J. Zhao, M. Rui, K. Cen, “GPU implementation of lattice Boltzmann method for flows with curved boundaries.”, Computer Methods in Applied Mechanics and Engineering, 225, pp. 65-73, 2012.
[23] E. Aharonov, D. H. Rothman, “Non‐Newtonian flow (through porous media): A lattice‐Boltzmann method.”, Geophysical Research Letters, 20(8), pp. 679-682, 1993
[24] X. He, G. D. Doolen, “Lattice Boltzmann method on a curvilinear coordinate system: Vortex shedding behind a circular cylinder.”, Physical Review E, 56(1), 434, 1997
[25] X. He, S. Chen, R. Zhang, “A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability.”, Journal of Computational Physics, 152(2), pp. 642-663, 1999
[26] S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows.”, Annual review of fluid mechanics, 30(1), pp. 329-364, 1998
[27] D. Raabe, “Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering.”, Modelling and Simulation in Materials Science and Engineering, 12(6), R13, 2004
[28] C. K. Aidun, J. R. Clausen, “Lattice-Boltzmann Method for Complex Flows.”, Annual review of fluid mechanics, 42, pp. 439-472, 2010
[29] L. Jahanshaloo, E. Pouryazdanpanah, N. A. Che Sidik, “A review on the application of the lattice Boltzmann method for turbulent flow simulation.”, Numerical Heat Transfer, Part A: Applications, 64(11), pp. 938-953, 2013
[30] Z. Lu, Y. Liao, D. Qian, J. B. McLaughlin, J. J. Derksen, K. Kontomaris, “Large eddy simulations of a stirred tank using the lattice Boltzmann method on a nonuniform grid.”, Journal of Computational Physics, 181(2), pp. 675-704, 2002
[31] O. Malaspinas, P. Sagaut, “Wall model for large-eddy simulation based on the lattice Boltzmann method.”, Journal of Computational Physics, 275, pp. 25-40, 2014
[32] J. Jacob, O. Malaspinas, P. Sagaut, “A new hybrid recursive regularised Bhatnagar–Gross–Krook collision model for lattice Boltzmann method-based large eddy simulation.”, Journal of Turbulence, 19(11-12), pp. 1051-1076, 2018
[33] K. D. Jensen, “Flow Measurement.”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(4), pp. 400-419, 2004
[34] R. P. Shimpi, H. G. Patel, “ A two variable refined plate theory for orthotropic plate analysis.” International Journal of Solids and Structures, 43(22-23), pp. 6783-6799, 2006
[35] G. Akoun, J. P. Yonnet, “3D analytical calculation of the forces exerted between two cuboidal magnets.”, IEEE Transactions and Magnetics, 20(5), pp. 1962-1964, 1984.
[36] D. V. Patil, K. N. Lakshmisha, B. Rogg, “Lattice Boltzmann simulation of lid-driven flow in deep cavities.”, Computers & Fluids, 35(10), pp. 1116-1125, 2016
[37] P. L. Bhatnagar, E. P. Gross, M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems.”, Physical Review, 94 (3), pp. 511–525, 1954
[38] P. Lallemand, L. S. Luo, “Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability.”, Physical Review E, 61(6), 6546, 2000
[39] R. Mei, W. Shyy, D. Yu,, L. S. Luo, “Lattice Boltzmann method for 3-D flows with curved boundary.”, Journal of Computational Physics, 161(2), pp. 680-699, 2000
[40] S. K. Kang, Y. A. Hassan, “The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows.”, Journal of Computational Physics, 232(1), pp. 100-117, 2013
[41] 洪國勛,黃育熙,「流體致振壓電能量擷取系統之數值開發與風洞實驗」,國立臺灣大學機械工程所碩士論文,2022。
[42] Q. Zou, X. He, “On pressure and velocity flow boundary conditions for the lattice Boltzmann BGK model.”, Physics of fluids, 9(6), pp. 1591-1598, 1997
[43] R. Mei, D. Yu, W. Shyy, L. S. Luo, “ Force evaluation in the lattice Boltzmann method involving curved geometry.”, Physical Review E, 65(4), 041203, 2002.
[44] A. G. Kravchenko, P. Moin, “Numerical studies of flow over a circular cylinder at Re D= 3900.”, Physics of fluids, 12(2), pp. 403-417, 2000
[45] M. A. Miguel, M. Di Nardo, “Running FineOpen43 simulations at VKI: A tutorial and a collection of scripts.”, 2017
[46] M. M. Rahman, M. M. Karim, M. A. Alim, “Numerical investigation of unsteady flow past a circular cylinder using 2-D Finite volume method.”, Journal of Naval Architecture and Marine Engineering, 4(1), pp. 27–42, 2007
[47] 廖展誼,馬劍清,「矩形平板於流固耦合問題的振動特性與暫態波傳之理論分析、數值計算與實驗量測」,國立臺灣大學機械工程所博士論文,2018。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89086-
dc.description.abstract本論文使用平板疊加法理論與晶格波茲曼法的流場模擬,探討壓電陶瓷雙晶片於單邊固定邊界且受軸向預應力作用下,在渦流激振下的面外振動特性,搭配有限元素法與實驗量測進行驗證,利用平板受軸向預應力作用會改變剛性之特性,變化壓電片的共振頻率以與渦街的振動頻率相互對應。理論解析先以壓電本構方程式結合克希荷夫薄板理論,將壓電雙晶片的三層結構等效成單層矩形平板,再透過力與力矩平衡關係式,得出受軸向預應力作用下的壓電平板之統御方程式,接著使用疊加法將平板拆分成多個結構塊進行求解,每個結構塊會皆會滿足原平板的部分邊界條件與統御方程,將各結構塊的解疊加後再滿足剩下的邊界條件,透過正交函數展開以求得壓電平板在單邊固定邊界以及軸向預應力作用下的共振頻率與模態振型,並與有限元素法模擬結果相互比較,兩者結果有著良好的對應性。
實驗量測部分使用磁力作為壓電平板的軸向預應力來源,根據磁力理論計算磁鐵在不同距離下的磁力大小,搭配雷射都卜勒測振儀來量測受不同大小磁力作用下壓電平板的振動頻率變化,並結合電子斑點干涉術以量測壓電平板的面外模態振型,部分實驗量測結果雖與理論模型無法完美擬合,但隨著作用力的增加確實能夠增減壓電片第一共振頻率的變化。風洞實驗先使用熱線風速計量測不同流速下圓柱繞流模型之渦街現象,並與二維、三維晶格波茲曼法以及計算流體力學結果進行比較,隨著流速增加,實驗量測結果與三維晶格波茲曼法具有良好對應性。接著量測圓柱複合壓電平板模型下,不同流速的渦流現象,搭配示波器同時量測壓電平板的電壓響應,驗證圓柱繞流所產生的渦街能激振壓電平板,並且當激振頻率與壓電平板的第一共振頻率相互匹配時,壓電平板的能量擷取效率會大幅提升且有較高的電壓輸出。最後架設磁力變換軸向剛性機構於風洞中,量測在不同流速且受不同量值軸向力作用下壓電平板的電壓響應,在相同的流速範圍下利用磁力變化壓電平板軸向剛性的電壓響應,相較於未作變頻設計有著更寬的頻寬顯示具有更好的效率。
zh_TW
dc.description.abstractThis research investigated the vibration characteristics of a piezoelectric plate subjected to pre-stress axial load using the superposition theory and applied to the vortex-induced vibration excitation by lattice Boltzmann method for flow field. The study is complemented by theoretical analysis, finite element method (FEM), and experimental measurements. The stiffness effect of pre-stress axial load on a piezoelectric plate is analyzed and leads to change in the resonant frequency of the piezoelectric energy harvester to correspond with the vortex shedding frequency. The theoretical analysis combines the piezoelectric constitutive equations by Kirchhoff's plate theory to equivalently represent the three-layer structure as a single-layer rectangular plate. The governing equation for the piezoelectric plate subjected to pre-stress axial load is obtained through force and moment balance equations. The superposition method is then employed to divide the plate into multiple structural blocks for the solution, where each block satisfies partial boundary conditions and the governing equation of the original plate. The solutions of individual blocks are superposed to satisfy the remaining boundary conditions. The resonance frequencies and mode shapes of the piezoelectric cantilevered plate under a pre-stress axial load are obtained through orthogonal function expansion and show good agreement with the results in FEM. In experimental measurements, magnetic force applied pre-stress axial load to the piezoelectric plate. Various magnetic forces are provided by the change in distance and analyzed by magnetic theory. Under different magnitudes of magnetic force, a laser Doppler vibrometer is employed to measure the variation of frequency spectrum for the piezoelectric plate. Electronic speckle pattern interferometry is also used to measure the resonant frequencies and their corresponding out-of-plane mode shapes of the piezoelectric plate. At least the first mode in the experiment can fit the theoretical model to change the natural frequency by pre-stress axial load, being used to design the variable-frequency function for the fluid-induced vibration energy harvester. The vortex shedding around a cylindrical bluff body is initially measured using a hot wire anemometer at different flow velocities in the wind tunnel experiments. The vortex frequency results in the 2D and 3D lattice Boltzmann method are compared with CFD results, showing better agreement with the 3D lattice Boltzmann method as the flow-rate changes. Subsequently, the vortex-induced vibration of a piezoelectric plate compound with a cylinder is measured, and the generated voltage of the piezoelectric plate is simultaneously recorded using an oscilloscope. The vortex shedding is intended to excite the first resonant frequency of a piezoelectric plate, as well as the vortex frequency, the efficiency in piezoelectric energy harvesting system increases significantly, resulting in higher voltage output. Finally, an axial force provides different axial stiffness for the piezoelectric plate by modulating magnitudes of magnetic force, to measure the highest voltage of the piezoelectric energy harvester in the wind tunnel, under different flow velocities. Compared to previous cases within the same flow velocity, the piezoelectric plate exhibits a wider bandwidth of voltage response.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:04:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:04:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 XV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 論文內容簡介 7
第二章 實驗原理與架設 9
2.1 電子斑點干涉術 9
2.2 雷射都卜勒測振儀 17
2.3 風洞 19
2.4 皮托管 23
2.5 熱線風速計 25
第三章 壓電矩形薄板理論 27
3.1 壓電陶瓷雙晶片 27
3.1.1 壓電本構方程式 28
3.1.2 薄板力學假設 33
3.1.3 壓電材料電學假設 35
3.1.4 壓電薄板受軸向力作用下之統御方程式推導 38
3.2 矩形薄板受軸向力作用之疊加法理論推導 46
3.2.1 單邊懸臂邊界之疊加法理論推導 46
3.2.2 理論解析與有限元素分析結果比較 81
3.2.3 質量效應下之單邊懸臂邊界疊加法理論推導 94
3.2.4 理論解析與有限元素分析結果比較 128
3.3 磁力計算模型 137
3.3.1 理論解析 137
3.2.2 磁力量測實驗 140
3.2.3 結果討論 143
3.4 壓電陶瓷雙晶片之共振頻率量測 145
3.4.1 實驗架設 145
3.4.2 結果討論 149
第四章 晶格波茲曼法 167
4.1 基本理論 167
4.1.1 波茲曼方程式 167
4.1.2 離散波茲曼方程式 170
4.1.3 大渦流模擬(Large Eddy Simulation, LES) 173
4.2 數值模擬 175
4.2.1 LBM 模擬流程 175
4.2.2 邊界條件設定 177
4.2.3 流體作用力計算 178
4.3 結果討論 179
4.3.1 圓柱繞流模型 179
4.3.2 圓柱夾持試片模型 201
第五章 壓電能量擷取實驗 214
5.1 無受力下壓電能量擷取實驗 214
5.2 受預應力作用下壓電能量擷取實驗 235
第六章 結論與未來展望 253
6.1 結論 253
6.2 未來展望 255
參考文獻 257
-
dc.language.isozh_TW-
dc.subject渦流致振zh_TW
dc.subject計算流體力學zh_TW
dc.subject有限元素法zh_TW
dc.subject疊加法zh_TW
dc.subject軸向預應力zh_TW
dc.subject磁力zh_TW
dc.subject壓電平板zh_TW
dc.subject晶格波茲曼法zh_TW
dc.subject風洞zh_TW
dc.subject能量擷取系統zh_TW
dc.subjectwind tunnelen
dc.subjectpiezoelectric plateen
dc.subjectmagnetic forceen
dc.subjectpre-stress axial loaden
dc.subjectsuperposition methoden
dc.subjectfinite element methoden
dc.subjectenergy harvesting systemen
dc.subjectlattice Boltzmann methoden
dc.subjectcomputational fluid dynamicsen
dc.subjectvortex-induced vibrationen
dc.title壓電平板以磁力變換軸向剛性之流體致振變頻能量擷取系統zh_TW
dc.titleMagnetic force modulating axial rigidity of piezoelectric plate to develop variable-frequency function in a fluid-induced vibration energy harvesteren
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉建豪;廖川傑zh_TW
dc.contributor.oralexamcommitteeChien-Hao Liu;Chuan-Chieh Liaoen
dc.subject.keyword壓電平板,磁力,軸向預應力,疊加法,有限元素法,能量擷取系統,晶格波茲曼法,計算流體力學,渦流致振,風洞,zh_TW
dc.subject.keywordpiezoelectric plate,magnetic force,pre-stress axial load,superposition method,finite element method,energy harvesting system,lattice Boltzmann method,computational fluid dynamics,vortex-induced vibration,wind tunnel,en
dc.relation.page261-
dc.identifier.doi10.6342/NTU202303513-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf15.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved