請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89076完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信樹 | zh_TW |
| dc.contributor.advisor | Hsin-Shu Chen | en |
| dc.contributor.author | 曾維寧 | zh_TW |
| dc.contributor.author | Weining Zeng Pranoto | en |
| dc.date.accessioned | 2023-08-16T17:01:53Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | [1] K. Adu-Manu, N. Adam, C. Tapparello, H. Ayatollahi, and W. Heinzelman, "Energy-harvesting wireless sensor networks (EH-WSNs): A review," ACM Transactions on Sensor Networks, vol. 14, pp. 1-50, 04/27 2018, doi: 10.1145/3183338.
[2] W. Wen Jong and L. Bor Shiun, "Piezoelectric MEMS Power Generators for Vibration Energy Harvesting," in Small-Scale Energy Harvesting, L. Mickael Ed. Rijeka: IntechOpen, 2012, p. Ch. 6. [3] C.-L. Kuo, S.-C. Lin, and W.-J. Wu, "Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting," Smart Material Structures, vol. 25, p. 105016, 2016, doi: 10.1088/0964-1726/25/10/105016. [4] D. Guyomar and M. Lallart, "Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation," Micromachines, vol. 2, no. 2, pp. 274-294doi: 10.3390/mi2020274. [5] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, "Toward energy harvesting using active materials and conversion improvement by nonlinear processing," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, pp. 584-95, 05/01 2005, doi: 10.1109/tuffc.2005.1428041. [6] M. Shim, J. Kim, J. Jeong, S. Park, and C. Kim, "Self-Powered 30 µW to 10 mW Piezoelectric Energy Harvesting System With 9.09 ms/V Maximum Power Point Tracking Time," IEEE Journal of Solid-State Circuits, vol. 50, pp. 2367-2379, 2014. [7] G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, "Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode," IEEE Transactions on Power Electronics, vol. 18, no. 2, pp. 696-703, 2003, doi: 10.1109/tpel.2003.809379. [8] Y. K. Ramadass and A. P. Chandrakasan, "An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor," IEEE Journal of Solid-State Circuits, vol. 45, no. 1, pp. 189-204, 2010, doi: 10.1109/jssc.2009.2034442. [9] D. A. Sanchez, J. Leicht, E. Jodka, E. Fazel, and Y. Manoli, "21.2 A 4µW-to-1mW parallel-SSHI rectifier for piezoelectric energy harvesting of periodic and shock excitations with inductor sharing, cold start-up and up to 681% power extraction improvement," in 2016 IEEE International Solid-State Circuits Conference (ISSCC), 31 Jan.-4 Feb. 2016 2016, pp. 366-367, doi: 10.1109/isscc.2016.7418059. [10] E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, "Piezoelectric energy harvesting device optimization by synchronous charge extraction," Journal of Intelligent Material Systems and Structures, vol. 16, pp. 865-876, 10/01 2005, doi: 10.1177/1045389x05056859. [11] T. Hehn et al., "A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters," IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2185-2198, 2012, doi: 10.1109/jssc.2012.2200530. [12] M. Lallart, W.-J. Wu, Y. Hsieh, and L. Yan, "Synchronous inversion and charge extraction (SICE): a hybrid switching interface for efficient vibrational energy harvesting," Smart Materials and Structures, vol. 26, no. 11, p. 115012, 2017/10/09 2017, doi: 10.1088/1361-665X/aa8d44. [13] K.-J. Cheng, "A Synchronous Inversion and Charge Extraction (SICE) Interface Circuit for Piezoelectric Energy Harvesting," Master's thesis, Graduate Institute of Electronics Engineering, National Taiwan University, 2019. [Online]. Available: http://dx.doi.org/10.6342/NTU201903480 [14] S. Sankar, P. H. Chen, and M. S. Baghini, "An Efficient Inductive Rectifier Based Piezo-Energy Harvesting Using Recursive Pre-Charge and Accumulation Operation," IEEE Journal of Solid-State Circuits, vol. 57, no. 8, pp. 2404-2417, 2022, doi: 10.1109/JSSC.2022.3153590. [15] Y. Peng et al., "An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Sense-and-Set Rectifier," IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3348-3361, 2019, doi: 10.1109/JSSC.2019.2945262. [16] Z. Chen, M. K. Law, P. I. Mak, X. Zeng, and R. P. Martins, "Piezoelectric Energy-Harvesting Interface Using Split-Phase Flipping-Capacitor Rectifier With Capacitor Reuse for Input Power Adaptation," IEEE Journal of Solid-State Circuits, vol. 55, no. 8, pp. 2106-2117, 2020, doi: 10.1109/JSSC.2020.2989873. [17] G. Shi, Y. Xia, X. Wang, L. Qian, Y. Ye, and Q. Li, "An Efficient Self-Powered Piezoelectric Energy Harvesting CMOS Interface Circuit Based on Synchronous Charge Extraction Technique," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 2, pp. 804-817, 2018, doi: 10.1109/TCSI.2017.2731795. [18] S. H. Nguyen, H. Richardson, and R. Amirtharajah, "A Bias-Flip Interface and Dual-Input DC-DC Converter for Piezoelectric and RF Energy Harvesting," in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 22-28 May 2021 2021, pp. 1-5, doi: 10.1109/ISCAS51556.2021.9401590. [19] S. Javvaji, V. Singhal, V. Menezes, R. Chauhan, and S. Pavan, "Analysis and Design of a Multi-Step Bias-Flip Rectifier for Piezoelectric Energy Harvesting," IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2590-2600, 2019, doi: 10.1109/JSSC.2019.2917158. [20] B. Çiftci, S. Chamanian, A. Koyuncuoğlu, A. Muhtaroğlu, and H. Külah, "A Low-Profile Autonomous Interface Circuit for Piezoelectric Micro-Power Generators," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 4, pp. 1458-1471, 2021, doi: 10.1109/TCSI.2021.3053503. [21] P. Angelov and M. Nielsen-Lönn, "A Fully Integrated Multilevel Synchronized-Switch-Harvesting-on-Capacitors Interface for Generic PEHs," IEEE Journal of Solid-State Circuits, vol. 55, no. 8, pp. 2118-2128, 2020, doi: 10.1109/JSSC.2020.2979178. [22] M. B. Khan, H. Saif, and Y. Lee, "A Piezoelectric Energy Harvesting Interface for Irregular High Voltage Input with Partial Electric Charge Extraction with 3.9× Extraction Improvement," in 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 4-6 Nov. 2019 2019, pp. 181-184, doi: 10.1109/A-SSCC47793.2019.9056937. [23] G. Gautschi, "Piezoelectric Sensors," in Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers, G. Gautschi Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 73-91. [24] S.-C. Lin, "High performance piezoelectric MEMS generators based on stainless steel substrate," Doctoral dissertation, Department of Engineering Science and Ocean Engineering, National Taiwan University, 2014. [Online]. Available: http://dx.doi.org/10.6342/NTU.2014.02072 [25] C. Chaoting, Y. Fu, T.-W. Hao, S.-C. Lin, and W.-j. Wu, The output power improvement and durability with different shape of MEMS piezoelectric energy harvester. 2018, p. 23. [26] PPA PRODUCTS Datasheet & User Manual, Revision No. 002 ed., MIDE Technology, Medford, MA, 2016, pp. 27-30. [27] K. Uchino, "Chapter 10 - Manufacturing Methods for Piezoelectric Ceramic Materials," in Advanced Piezoelectric Materials (Second Edition), K. Uchino Ed.: Woodhead Publishing, 2017, pp. 385-421. [28] A. C. T. Harrie, "Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems," Journal of Micromechanics and Microengineering, vol. 6, no. 1, p. 157, 1996/03/01 1996, doi: 10.1088/0960-1317/6/1/036. [29] F. W. Joseph, "LC Resonance and Matching Networks," in High Frequency Techniques: An Introduction to RF and Microwave Design and Computer Simulation: IEEE, 2004, pp. 59-77. [30] J. Liang, "Synchronized bias-flip interface circuits for piezoelectric energy harvesting enhancement: A general model and prospects," Journal of Intelligent Material Systems and Structures, vol. 28, no. 3, pp. 339-356, 2017/02/01 2016, doi: 10.1177/1045389x16642535. [31] E. A. Gomez-Casseres, S. M. Arbulú, R. J. Franco, R. Contreras, and J. Martínez, "Comparison of passive rectifier circuits for energy harvesting applications," in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 15-18 May 2016 2016, pp. 1-6, doi: 10.1109/ccece.2016.7726840. [32] M. Ghovanloo and K. Najafi, "Fully integrated wideband high-current rectifiers for inductively powered devices," IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1976-1984, 2004, doi: 10.1109/jssc.2004.835822. [33] J. Liang and W. H. Liao, "Improved Design and Analysis of Self-Powered Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting Systems," IEEE Transactions on Industrial Electronics, vol. 59, no. 4, pp. 1950-1960, 2012, doi: 10.1109/TIE.2011.2167116. [34] D. Kwon and G. A. Rincon-Mora, "A single-inductor 0.35 μm CMOS energy-investing piezoelectric harvester," IEEE Journal of Solid-State Circuits, vol. 49, pp. 2277-2291, 10/01 2014, doi: 10.1109/jssc.2014.2342721. [35] F. Gong, H. Yu, and L. He, Fast non-Monte-Carlo transient noise analysis for high-precision analog/RF circuits by stochastic orthogonal polynomials. 2011, pp. 298-303. [36] S. Du, Y. Jia, C. D. Do, and A. A. Seshia, "An Efficient SSHI Interface With Increased Input Range for Piezoelectric Energy Harvesting Under Variable Conditions," IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2729-2742, 2016, doi: 10.1109/jssc.2016.2594943. [37] I. M. Filanovsky and H. Baltes, "CMOS Schmitt trigger design," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 41, no. 1, pp. 46-49, 1994, doi: 10.1109/81.260219. [38] S. Chamanian, H. Uluşan, A. Koyuncuoğlu, A. Muhtaroğlu, and H. Külah, "An Adaptable Interface Circuit With Multistage Energy Extraction for Low-Power Piezoelectric Energy Harvesting MEMS," IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2739-2747, 2019, doi: 10.1109/TPEL.2018.2841510. [39] S. Du, Y. Jia, C. Zhao, G. A. J. Amaratunga, and A. A. Seshia, "A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric Energy Harvesting," IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1733-1743, 2019, doi: 10.1109/JSSC.2019.2893525. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89076 | - |
| dc.description.abstract | 物聯網和各種無線電設備的廣泛使用,意味著智能生態系統已經融進了我們的日常生活裡。然而,這些設備的供電仍是個值得注意的問題。 雖然使用一次性電池非常方便,但會帶來一些後果,包括電池定期更換和廢棄電池造成的環境污染。因其普遍性和在可取得的室內源中是最能提供高功率密度,環境振動成了最具前瞻性的替代方案。本論文利用所提出的AC-DC介面電路將從壓電收集器收集到的振動能量整流。
壓電收集器的目標是增加其輸出功率,而如今的先進製程其工作電壓是趨向更低。 擷取能量且不損壞介面電路,的確實是個挑戰。本論文提供在落實介面積體電路的過程中所遇到輸入電壓受局限的解決方案。 壓電能量擷取系統裡兩種常見介面電路, 同步切換電感式能量擷取介面電路(SSHI)和同步電荷擷取介面電路(SECE)的結合,又稱同步反相和電荷提取 (SICE)介面電路,可同時提供高功率增益和負載獨立性的雙重優點。一種基於SICE的介面電路, 可處理高於元件閘極-源極間VGS 的最大耐壓的輸入電壓被提出來。採用台積電 0.18 μm HV-CMOS 製程來達成,其元件的VGS 最大耐壓為 5 V。若使用傳統的壓電能量擷取介面電路,輸入電壓被限制不可超過 5 V,因此可擷取的能量被限制住。利用所提出的閘極電壓控制電路,所提出的介面電可允許 5 V 以上至VDS 最大耐壓(12 V)的輸入電壓且不至於發生擊穿。作為高電壓節點與控制電路間介面電路的新穎負電壓轉換器也被提出來。根據量測結果,在壓電電壓峰值為 8.8 V 時,可擷取到11.56 μW的輸出功率,相當於產生 45% 的功率增益,且還可同時顯現出其負載獨立性。 | zh_TW |
| dc.description.abstract | The widespread usage of the Internet of Things and various wireless electrical devices depicts the integration of smart ecosystems into our daily lives. However, powering these devices remains a significant issue. Although using disposable batteries is convenient, the consequences may engender additional problems, such as regular battery replacement and environmental pollution from discarded batteries. Due to its ubiquity and ability to provide high power density, ambient vibration is the most promising alternative among available indoor resources. This thesis proposed an AC-DC interface circuit to rectify the vibration energy captured by the piezoelectric harvester.
Piezoelectric harvesters aim to increase output power, whereas the operating voltage of emerging technologies nowadays is going lower. Harnessing energy without damaging the interface circuit becomes a challenging matter. This thesis proposes a solution for input voltage limitations encountered upon implementing the integrated interface circuit. A combination of two common interface circuits in piezoelectric energy harvesting, Synchronized Switch Harvesting on Inductor (SSHI) and Synchronous Electric Charge Extraction (SECE), known as the Synchronous Inversion and Charge Extraction (SICE) interface circuit, can simultaneously provide the benefits of high power gain and loading-independent property. A SICE-based interface circuit for handling input voltage higher than the maximum VGS voltage rating is proposed. It is implemented with TSMC 0.18 μm HV-CMOS process, where its devices have a VGS voltage rating of 5 V. With conventional harvesting schemes, the input voltage is restricted from exceeding 5 V, thus limiting the harvestable energy. Using the proposed gate voltage controller, the proposed interface circuit can handle input voltages beyond 5 V up to VDS voltage rating (12 V) without breakdown. Also, a novel mechanism for a negative voltage converter is proposed as an interface between the high voltage nodes and control circuits. It can extract an output power of up to 11.56 μW when the piezoelectric voltage peak is 8.8 V, resulting in a power gain of 45% as per measurement results and being load-independent simultaneously. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:01:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T17:01:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
致謝 iv 摘要 vi Abstract viii Contents x List of Figures xiv List of Tables xx Chapter 1 : Introduction 1 1.1 Motivation 5 1.2 Thesis Organization 10 Chapter 2 : Piezoelectric Energy Harvesting System and Interface Circuits 11 2.1 Introduction to Piezoelectric Harvester and Modeling 12 2.1.1 Piezoelectric Materials and Effect 12 2.1.1.1 Piezoelectric Materials 12 2.1.1.2 Piezoelectric Effect 13 2.1.2 Piezoelectric Harvester 15 2.1.2.1 Piezoelectric Micro-Electro-Mechanical-Systems (MEMS) 15 2.1.2.2 Piezoelectric Ceramics 18 2.1.3 Equivalent Circuit Modeling of the Piezoelectric Harvesters 21 2.2 Standard Energy Harvesting Interface Circuit 24 2.2.1 Circuit Architecture and Operation 24 2.2.2 Analysis of the Harvested Power 26 2.2.3 Introduction to Maximum Power Point Tracking 29 2.3 Synchronized Switch Harvesting on Inductor 30 2.3.1 Circuit Architecture and Operation 31 2.3.2 Calculation of Harvested Power 33 2.4 Synchronous Electric Charge Extraction 38 2.4.1 Circuit Architecture and Operation 38 2.4.2 Calculation of Harvested Power 40 2.5 Synchronous Inversion and Charge Extraction 42 2.5.1 Circuit Architecture and Operation 42 2.5.2 Calculation of Harvested Power 45 2.6 Comparison and Analysis of Different Interface Circuits 48 Chapter 3 : Proposed Synchronous Inversion and Charge Extraction (SICE) for High-Input-Voltage 51 3.1 Design Goals 52 3.2 Proposed SICE Interface Circuit Architecture 55 3.3 Operation Principle 59 3.4 Power Stage 63 3.4.1 Diodes 65 3.4.2 Bulk Regulation 67 3.4.3 MOSFET Drivers 70 3.5 High Input Voltage Handling Mechanism 71 3.5.1 Gate Voltage Controller 71 3.5.2 Negative Voltage Converter 75 3.6 Control Circuit Blocks 77 3.6.1 Peak Detector 79 3.6.2 Continuous-Time Comparator 81 3.6.3 De-glitch Circuit 83 3.6.4 Fixed-Delay Generator 84 3.6.5 Logic Control Circuit 85 3.6.6 Tunable-delay generator 87 3.6.7 Schmitt Trigger 88 3.6.8 Low-Dropout Regulator 90 3.7 Simulation Results 92 3.7.1 Full-Chip Simulation 92 3.7.2 Summary Table 112 Chapter 4 : Measurement Results 115 4.1 Chip Micrograph and Packaging 115 4.2 Experimental Setup 119 4.3 Experimental Result 123 4.4 Performance Summary 137 Chapter 5 : Conclusion and Future Work 143 5.1 Conclusion 143 5.2 Future Work 145 5.2.1 Power Stage Improvements 146 5.2.2 Control Circuits Improvements 148 Reference 151 | - |
| dc.language.iso | en | - |
| dc.subject | 壓電能量擷取 | zh_TW |
| dc.subject | 同步反相和電荷提取 | zh_TW |
| dc.subject | AC-DC整流器 | zh_TW |
| dc.subject | 製程限制 | zh_TW |
| dc.subject | 高輸入電壓 | zh_TW |
| dc.subject | AC-DC Rectifier | en |
| dc.subject | SICE | en |
| dc.subject | Process Limitations | en |
| dc.subject | Piezoelectric Energy Harvesting | en |
| dc.subject | High Input Voltage | en |
| dc.title | 應用於高輸入電壓之壓電能量擷取系統的同步反轉和電荷提取介面電路 | zh_TW |
| dc.title | A Synchronous Inversion and Charge Extraction Interface Circuit for High-Input-Voltage Piezoelectric Energy Harvesting Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳文中;陳景然 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Jong Wu;Ching-Jan Chen | en |
| dc.subject.keyword | 壓電能量擷取,AC-DC整流器,同步反相和電荷提取,製程限制,高輸入電壓, | zh_TW |
| dc.subject.keyword | Piezoelectric Energy Harvesting,AC-DC Rectifier,SICE,Process Limitations,High Input Voltage, | en |
| dc.relation.page | 155 | - |
| dc.identifier.doi | 10.6342/NTU202302842 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 16.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
