Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89035
Title: 基於結構標記生成帶文字標籤的圖結構
TextGraphBART: Unifying Graph and Text Generation with Structure Token
Authors: 鄭景文
Ching-Wen Cheng
Advisor: 葉丙成
Ping-Cheng Yeh
Co-Advisor: 李宏毅
Hung-Yi Lee
Keyword: 深度學習,知識圖譜,圖結構生成,
Deep Learning,Knowledge Graph,Graph Generation,
Publication Year : 2023
Degree: 碩士
Abstract: 近年來生成式模型越來越受到重視,尤其是基於 Transformer 或是 Attention的模型在各個領域都有不少的成果,像是文章、音樂、圖片、影片等等。與此同時,在生成帶文字標籤的圖結構(如知識圖譜、心智圖等)上並沒有太多發展,由於該問題同時牽扯到圖結構的生成與文字標籤的生成,以往的方法大致上會分成兩種,一種是將文字與圖結構分別用兩個不同的模型,另一種則是將圖拆解成一段段的文字序列並使用序列模型來處理。然而,使用兩個模型的方法容易缺少圖結構與文字之間交互的資訊,而將圖拆解成序列的方法則是會損失部分的圖結構資訊並且將低生成效率。本論文提出了一種結構標記,能夠將圖結構與文字共同轉成單一的表示法。透過這種表示法,模型可以更有效率的學習以及生成圖結構與文字,在此之上我們也提出了一種預訓練的方法。為了證明方法的有效性,我們在兩個公開的資料集上做測試,並且結果顯示我們的方法可以用更少的參數量達到跟過去模型可比的分數。
Transformer layer has been proved to work well in several domains beyond text, like audio, image, and even multi-modal. The idea behind these models is that we can treat different kind of input as a series of tokens. Recent research also shown that with carefully designed input token, a pure transformer encoder can also be a powerful graph encoder. Taking steps further in this direction, we propose a new kind of input representation called ”Structure Token”. With structure token, we can represent graph with text label as a sequence of tokens. By converting both graph and text into structure token, we train a pure transformer encoder-decoder that learn a unified representation and generate both graph and text with the same model. We also propose a new pretrain method similar to mBART pre-training but with the structure token. In this paper, we show that with the proposed method, we are able to train a smaller model that has performance comparable to the T5 variants on text-to-graph and graph-to-text tasks.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89035
DOI: 10.6342/NTU202302806
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-111-2.pdf2.03 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved