Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89000
Title: 圖神經網路之後門注入式攻擊
Backdoor Injection Attack via Graph Neural Network
Authors: 賴繹文
Yi-Wen Lai
Advisor: 陳銘憲
Ming-Syan Chen
Keyword: 圖神經網路,後門攻擊,
GNN,Backdoor Attack,
Publication Year : 2023
Degree: 碩士
Abstract: 本文介紹了一種新穎的方法,BAGNN,用於圖形基礎的後門攻擊領域。BAGNN將經典的圖形分類問題的探索範疇擴展到注入攻擊場景,利用強化學習技術,特別是 Q 學習和深度 Q 學習。通過檢視狀態、行動和獎勵動態,構建了精密的後門注入攻擊方法。在多個資料集上的評估顯示了令人鼓舞的結果,展示了 BAGNN在攻擊成功率和誤分類信心方面的效能,並對良性準確性的影響最小。該研究強調了創建防禦對抗攻擊的安全模型的重要性,同時也強調了需要強大的對抗模型。本研究拓寬了我們對圖形任務的對抗攻擊的理解,並識別了進一步探索的可能途徑,如在更大的數據集上進行驗證以及探查更複雜的攻擊情境。
This paper introduces a novel method, BAGNN, to the field of graph-based backdoor attacks. BAGNN extends the exploration of the classic graph classification problem to injection attack scenarios, utilizing reinforcement learning techniques, specifically Q-learning and Deep Q-learning. By examining state, action, and reward dynamics, sophisticated backdoor injection attack methods are constructed. Evaluations reveal promising results across multiple datasets, showcasing BAGNN’s effectiveness in attack success rate and misclassification confidence, with minimal impact on benign accuracy. The study underscores the importance of creating secure models against adversarial attacks while also emphasizing the need for robust adversarial models. This research broadens our understanding of adversarial attacks on graph tasks, identifying potential avenues for further exploration such as validation on larger datasets and probing more complex attack scenarios.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89000
DOI: 10.6342/NTU202301785
Fulltext Rights: 未授權
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
929.59 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved