Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88852
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛宇甯zh_TW
dc.contributor.advisorLouis Geen
dc.contributor.author葉錦德zh_TW
dc.contributor.authorKin-Tar Yapen
dc.date.accessioned2023-08-15T18:03:18Z-
dc.date.available2023-11-10-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-31-
dc.identifier.citation[1] Seed, H. B., Arango, I., & Chan, C. K. (1975). Evaluation of soil liquefaction potential for level ground during earthquakes. A summary report (No. NUREG-0026). Shannon and Wilson, Inc., Seattle, Wash. (USA); Agbabian Associates, El Segundo, Calif. (USA).
[2] Obermeier, S. F. (1996). Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, 44 (1-4), 1-76.
[3] Youd, T. L. (1984). Geologic effects-liquefaction and associated ground failure. Proceedings of the Geologic and Hydraulic Hazards Training Program, 210-232.
[4] Kosekt, J., Matsuo, O., & Koga, Y. (1997). Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake. Soils and Foundations, 37 (1), 97-108.
[5] Koseki, J., Matsuo, O., & Tanaka, S. (1998). Uplift of sewer pipes caused by earthquake-induced liquefaction of surrounding soil. Soils and foundations, 38 (3), 75-87.
[6] Bransby, M. F., Newson, T. A., Brunning, P., & Davies, M. C. R. (2001, June). Numerical and centrifuge modeling of the upheaval resistance of buried pipelines. In Proceedings of OMAE pipeline symposium, Rio de Janeiro.
[7] Kang, G. C., Tobita, T., Iai, S., & Ge, L. (2013). Centrifuge modeling and mitigation of manhole uplift due to liquefaction. Journal of geotechnical and geoenvironmental engineering, 139(3), 458-469.
[8] Huang, B., Liu, J., Lin, P., & Ling, D. (2014). Uplifting behavior of shallow buried pipe in liquefiable soil by dynamic centrifuge test. The Scientific World Journal, 2014.
[9] Castiglia, M., de Magistris, F. S., & Koseki, J. (2019). Uplift of buried pipelines in liquefiable soils using shaking table apparatus. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions (pp. 1638-1646). CRC Press.
[10] Tobita, T., Kang, G. C., & Iai, S. (2011). Centrifuge modeling on manhole uplift in a liquefied trench. Soils and foundations, 51(6), 1091-1102.
[11] Chen, S., Tang, B., Zhao, K., Li, X., & Zhuang, H. (2020). Seismic response of irregular underground structures under adverse soil conditions using shaking table tests. Tunnelling and Underground Space Technology, 95, 103145.
[12] Ecemis, N., Valizadeh, H., & Karaman, M. (2021). Sand-granulated rubber mixture to prevent liquefaction-induced uplift of buried pipes: a shaking table study. Bulletin of Earthquake Engineering, 19, 2817-2838.
[13] Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India.
[14] Wood, D. M. (1990). Soil behaviour and critical state soil mechanics. Cambridge university press.
[15] Poulos, S. J., Castro, G., & France, J. W. (1985). Liquefaction evaluation procedure. Journal of Geotechnical Engineering, 111(6), 772-792.
[16] Seed, R. B., Cetin, K. O., Moss, R. E., Kammerer, A. M., Wu, J., Pestana, J. M., ... & Faris, A. (2003). Recent advances in soil liquefaction engineering: a unified and consistent framework. In Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar: Long Beach, CA.
[17] Dafalias, Y. F. (1986). Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. Journal of engineering mechanics, 112 (9), 966-987.
[18] Nieto-Leal, A., & Kaliakin, V. N. (2014). Improved shape hardening function for bounding surface model for cohesive soils. Journal of Rock Mechanics and Geotechnical Engineering, 6 (4), 328-337.
[19] Mroz, Z. (1967). On the description of anisotropic workhardening. Journal of the Mechanics and Physics of Solids, 15 (3), 163-175.
[20] Zienkiewicz, O. C., & Mroz, Z. (1984). Generalized plasticity formulation and applications to geomechanics. Mechanics of engineering materials, 44 (3), 655-680.
[21] Valizadeh, H., & Ecemis, N. (2022). Soil liquefaction-induced uplift of buried pipes in sand-granulated-rubber mixture: Numerical modeling. Transportation Geotechnics, 33, 100719.
[22] Dinesh, N., Banerjee, S., & Rajagopal, K. (2022). Performance evaluation of PM4Sand model for simulation of the liquefaction remedial measures for embankment. Soil Dynamics and Earthquake Engineering, 152, 107042.
[23] Adalier, K., Elgamal, A. W., & Martin, G. R. (1998). Foundation liquefaction countermeasures for earth embankments. Journal of Geotechnical and Geoenvironmental Engineering, 124 (6), 500-517.
[24] Vasko, A. (2015). An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests. The George Washington University.
[25] Ziotopoulou, K. (2018). Seismic response of liquefiable sloping ground: Class A and C numerical predictions of centrifuge model responses. Soil dynamics and earthquake engineering, 113, 744-757.
[26] Carraro, J. A. H., Bandini, P., & Salgado, R. (2003). Liquefaction resistance of clean and nonplastic silty sands based on cone penetration resistance. Journal of geotechnical and geoenvironmental engineering, 129 (11), 965-976.
[27] Demir, S., & Özener, P. (2019). Numerical investigation of seismic performance of high modulus columns under earthquake loading. Earthquake Engineering and Engineering Vibration, 18, 811-822.
[28] Tan, S. A., Tjahyono, S., & Oo, K. K. (2008). Simplified plane-strain modeling of stone-column reinforced ground. Journal of geotechnical and geoenvironmental engineering, 134 (2), 185-194.
[29] Makra, A. (2013). Evaluation of the UBC3D-PLM constitutive model for prediction of earthquake induced liquefaction on embankment dams.
[30] Petalas, A., & Galavi, V. (2013). Plaxis liquefaction model ubc3d-plm. Plaxis report.
[31] 范韻翎 (2022) : 「振動台土壤液化引致噴砂與沉陷之機制」,碩士論文,國立台灣大學土木工程學系,臺北,台灣。
[32] 王昊擎 (2023) : 「利用振動台試驗模擬土壤液化引致地下管線上浮之現象」,碩士論文,國立台灣大學土木工程學系,臺北,台灣。
[33] Hung, W. Y., Lee, C. J., & Hu, L. M. (2018). Study of the effects of container boundary and slope on soil liquefaction by centrifuge modeling. Soil Dynamics and Earthquake Engineering, 113, 682-697.
[34] Morales, B., Humire, F., & Ziotopoulou, K. (2021). Data from: Cyclic Direct Simple Shear Testing of Ottawa F50 and F65 Sands (Feb. 1st, 2021). Distributed by Design Safe-CI Data Depot.
[35] Beaty, M. H., & Perlea, V. G. (2011, April). Several observations on advanced analyses with liquefiable materials. In Proceedings of the 31st Annual USSD Conference and 21st Conference on Century Dam Design-Advances and Adaptations (pp. 1369-1397).
[36] Richart, F. E., Hall, J. R., & Woods, R. D. (1970). Vibrations of soils and foundations.
[37] ElGhoraiby, M. A., Park, H., & Manzari, M. T. (2020). Stress-strain behavior and liquefaction strength characteristics of Ottawa F65 sand. Soil Dynamics and Earthquake Engineering, 138, 106292.
[38] Salgado, R., Bandini, P., & Karim, A. (2000). Shear strength and stiffness of silty sand. Journal of geotechnical and geoenvironmental engineering, 126 (5), 451-462.
[39] Vilhar, G., & Brinkgreve, R. (2018). Plaxis the PM4Sand model 2018.
[40] Boulanger, R. W., & Ziotopoulou, K. (2017). PM4Sand (version 3.1): A sand plasticity model for earthquake engineering applications. Rep. No. UCD/CGM-17/01. Davis, CA: Center for Geotechnical Modeling, Dept. of Civil and Environmental Engineering, Univ. of California.ElGhoraiby, M. A., Park, H., & Manzari, M. T. (2020). Stress-strain behavior and liquefaction strength characteristics of Ottawa F65 sand. Soil Dynamics and Earthquake Engineering, 138, 106292.
[41] Dafalias, Y. F., & Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130 (6), 622-634.
[42] PLAXIS 2D. (2022). 3-Material models manual (V22.2), E-book edition.
[43] PLAXIS 2D. (2022). 1-Tutorial manual (V22.2), E-book edition.
[44] PLAXIS 2D (2022). 4-Scientific manual (V22.2), E-book edition.
[45] Puebla, H., Byrne, P. M., & Phillips, R. (1997). Analysis of CANLEX liquefaction embankments: prototype and centrifuge models. Canadian Geotechnical Journal, 34 (5), 641-657.
[46] Beaty, M., & Byrne, P. M. (1998, August). An effective stress model for pedicting liquefaction behaviour of sand. In Geotechnical Earthquake Engineering and Soil Dynamics III (pp. 766-777). ASCE.
[47] Beaty, M. H., & Byrne, P. M. (2011). UBCSAND constitutive model. Version 904aR, UBCSAND Constitutive model on Itasca UDM Web Site, 69.
[48] Iai, S. (1989). Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field. Soils and Foundations, 29 (1), 105-118.
[49] Meymand, P. J. (1998). Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay. University of California, Berkeley.
[50] Laera, A., & Brinkgreve, R. B. J. (2015). Site response analysis and liquefaction evaluation.
[51] Subasi, O., Koltuk, S., & Iyisan, R. (2022). A numerical study on the estimation of liquefaction-induced free-field settlements by using PM4Sand model. KSCE Journal of Civil Engineering, 1-12.
[52] PLAXIS 2D. (2022). 2-Reference manual (V22.2), E-book edition.
[53] Bilotta, E. (2018). Modelling tunnel behaviour under seismic actions: An integrated approach. In Physical Modelling in Geotechnics (pp. 3-20). CRC Press.
[54] Saeedzadeh, R., & Hataf, N. (2011). Uplift response of buried pipelines in saturated sand deposit under earthquake loading. Soil Dynamics and Earthquake Engineering, 31 (10), 1378-1384.
[55] Seth, D., Manna, B., Shahu, J. T., Fazeres-Ferradosa, T., Figueiredo, R., Romão, X., ... & Taveira-Pinto, F. (2022). Numerical Modelling of the Effects of Liquefaction on the Upheaval Buckling of Offshore Pipelines Using the PM4Sand Model. Energies, 15 (15), 5561.
[56] Viladkar, M. N., & Singh, M. (2021). Some Aspects of Seismic Soil–Structure Interaction of Lifeline Structures. Indian Geotechnical Journal, 51, 482-501.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88852-
dc.description.abstract因應台灣城市化和人口快速增長民衆生活水平重要性日益突出,地下維生管線與交通隧道等作爲民衆生活機能以及交通運輸等公用設施,其安全性和可靠性對於城市和非城市地區的正常運行至關重要。然而,台灣處於歐亞板塊與菲律賓板塊交界處的位置,特殊的地理環境導致地震發生的機率極爲頻繁,土壤液化等地震災害事件隨之而來。因此,土壤液化對於地下維生管線的影響相關研究十分重要。
本研究使用有限元素法軟體PLAXIS 2D 平台内建之PM4Sand與UBC3D-PLM兩種循環荷載組成律模式,進行地下管線於可液化土層之動態數值模擬分析。首先,使用Python 直譯器模擬不排水試驗的單元分析 (Cyclic direct simple shear, CDSS),以擬合真實試驗之抗液化曲線為目標,來進行組成律模式參數率定與敏感度分析,其率定之結果作爲後續數值模型土層之使用參數。本研究之分析分別爲無埋設地下管線與有埋設地下管線兩種數值模型。無埋設地下管線數值模型的目的是驗證所選擇的兩種組成律模式能否準確模擬土壤液化行為,並通過與試驗結果比對加速度和超額孔隙水壓的時間歷時進行驗證。根據無管線模型試驗的比對結果,PM4Sand和UBC3D-PLM都能有效地捕捉到液化趨勢。因此,本研究進一步分析埋設地下管線數值模型的案例,並比較兩種組成律模式對於管線上浮量的預測能力。
比較兩種組成律模式所擬合之試驗抗液化曲線,PM4Sand模式表現優異,能夠較準確地模擬出超額孔隙水壓比與單軸向應變3%時的情況。而UBC3D-PLM模式的表現較差,僅可模擬出近於超額孔隙水壓比,但無法達到單軸向應變3%。經過一系列試驗加速度與水壓歷時結果比對,PM4Sand模式相對於UBC3D-PLM模式更接近試驗結果的趨勢,可模擬液化發生時水壓激發與加速度縮小的變化。從管線上浮量之模擬結果可發現,PM4Sand和UBC3D-PLM兩種模式均有低估上浮量的現象。
關鍵字:土壤液化、循環荷載組成律模式、參數率定、動態數值模擬、管線上浮。
zh_TW
dc.description.abstractIn response to the increasing importance of urbanization and rapid population growth in Taiwan, the significance of improving people’s living standards has become more prominent. Underground infrastructure, such as utility lines and transportation tunnels, serves as vital components of public facilities and transportation, playing a crucial role in ensuring the safety and reliability of operations in both urban and rural areas. However, Taiwan’s unique geographical location at the junction of the Eurasian Plate and the Philippine Sea Plate leads to a high probability of frequent seismic activities, which are often accompanied by earthquake-related disasters like soil liquefaction. Therefore, it is essential to study soil liquefaction’s impact on underground infrastructure.
This study investigates two cyclic constitutive models for dynamic numerical analyses in PLAXIS 2D: PM4Sand and UBC3D-PLM. Firstly, the parameter calibration process of the consolidated undrained Cyclic Direct Simple Shear Test (CDSS) is simplified using a Python compiler. Based on liquefaction strength curves, parameter sensitivity analyses and model parameter calibrations are conducted for the two specified constitutive models. The calibrated results serve as the basis for subsequent analyses. Secondly, two numerical models are simulated, one without a buried underground pipeline and the other with a buried underground pipeline. The numerical results are then compared with the results of shaking table tests. Through these numerical models, the comparison focuses on the acceleration, excitation of excess pore pressure, and prediction of pipeline uplift with the shaking table test results.
The conclusions can be drawn in the following. During the parameter fitting for the consolidated undrained CDSS test, the UBC3D-PLM model fails to achieve a cyclic axial strain of 3% and shows a fixed oscillation phenomenon, rendering it hard to determine the number of cycles for the liquefaction strength curve. The PM4Sand model offers good simulations in the element tests. This constitutive model in PLAXIS 2D also can generate a similar trend in acceleration oscillation and pore pressure excitation compared to the shaking table test results without a pipeline. The PM4sand model outperforms the UBC3D-PLM model for simulating the liquefaction strength curve and the model without considering a pipeline. However, compared to shaking table results considering a pipeline, both constitutive models underestimate pipeline uplift displacement.

Keywords: Soil liquefaction, cyclic constitutive models, parameter calibration, dynamic numerical simulation, pipeline uplift.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T18:03:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T18:03:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與流程 2
1.3 論文架構及主要內容 2
第二章 文獻回顧 4
2.1 土壤液化介紹 4
2.1.1 發生機制 4
2.1.2 影響因素 5
2.1.3 破壞模式 5
2.2 土壤液化試驗 8
2.2.1 振動台試驗 8
2.2.2 離心機試驗 9
2.3 土壤液化數值模擬 11
2.3.1 組成律模式 12
2.3.1.1 邊界面塑性模式 (Bounding surface plasticity model) 12
2.3.1.2 多面塑性模式 (Multi-Surface plasticity model) 13
2.3.1.3 廣義塑性 (Generalized plasticity) 14
2.3.2 循環荷載組成律在數值模擬土壤液化的應用 14
第三章 研究方法 27
3.1 材料基本性質 28
3.2 PLAXIS 2D 概述 31
3.3 土壤組成律模式 32
3.3.1 PM4Sand 37
3.3.2 UBC3D-PLM 38
第四章 模型建立 41
4.1 參數設定 41
4.1.1 參數敏感度分析 41
4.1.2 參數率定 51
4.2 模型設定 57
4.2.1 無埋設地下管線模型 59
4.2.1.1 網格 (Mesh) 59
4.2.1.2 阻尼 (Damping) 60
4.2.1.3 邊界條件 (Boundary conditions) 62
4.2.1.4 階段設定 (Stage construction) 63
4.2.1.5 加速度歷時 64
4.2.2 有埋設地下管線模型 69
4.2.2.1 網格 (Mesh) 69
4.2.2.2 阻尼 (Damping) 69
4.2.2.3 邊界條件 (Boundary conditions) 69
4.2.2.4 階段設定 (Stage construction) 70
4.2.2.5 加速度歷時 70
第五章 數值結果 72
5.1 無埋設地下管線模型 72
5.2 埋設地下管線模型 74
5.2.1 Solid 74
5.2.2 Plate 86
5.2.3 Plate-interface (Adjacent soil) 98
第六章 結論與建議 115
6.1 結論 115
6.1.1 參數率定 115
6.1.2 無埋設地下管線模型 115
6.1.3 埋設地下管線模型 115
6.2 後續研究建議 116
參考文獻 118
附錄A. CDSS 124
附錄B. 案例分析表 129
附錄C. Ru分佈圖 130
附錄D. 上浮分佈圖 137
-
dc.language.isozh_TW-
dc.subject參數率定zh_TW
dc.subject循環荷載組成律模式zh_TW
dc.subject土壤液化zh_TW
dc.subject管線上浮zh_TW
dc.subject動態數值模擬zh_TW
dc.subjectcyclic constitutive modelsen
dc.subjectSoil liquefactionen
dc.subjectdynamic numerical simulationen
dc.subjectparameter calibrationen
dc.subjectpipeline upliften
dc.title比較兩種循環荷載組成律模式於可液化地盤之分析-以地下管線上浮為例zh_TW
dc.titleModeling Pipeline Uplift Due to Liquefaction Using Two Cyclic Constitutive Models: A Comparative Studyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee邱俊翔;鄭世豪;黃郁惟;葉馥瑄zh_TW
dc.contributor.oralexamcommitteeJiunn-Shyang Chiou;Shih-Hao Cheng;Yu-Wei Hwang;Fu-Hsuan Yehen
dc.subject.keyword土壤液化,循環荷載組成律模式,參數率定,動態數值模擬,管線上浮,zh_TW
dc.subject.keywordSoil liquefaction,cyclic constitutive models,parameter calibration,dynamic numerical simulation,pipeline uplift,en
dc.relation.page143-
dc.identifier.doi10.6342/NTU202302266-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf16.05 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved