Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88831
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥甫zh_TW
dc.contributor.advisorYan-Fu Kuoen
dc.contributor.author陳柏霖zh_TW
dc.contributor.authorBo-Lin Chenen
dc.date.accessioned2023-08-15T17:58:00Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-29-
dc.identifier.citationAgricultural Statistics Yearbook. (2021). Council of Agriculture, Executive Yuan, Taiwan
Animal and Plant Epidemics. (2023).
Aydin, A., Cangar, O., Ozcan, S. E., Bahr, C., & Berckmans, D. (2010). Application of a fully automatic analysis tool to assess the activity of broiler chickens with different gait scores. Computers and Electronics in Agriculture, 73(2), 194-199.
Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. 2016 IEEE international conference on image processing (ICIP),
Bochkovskiy, A., Wang, C.-Y., & Hong, Y. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv pre-print server. https://doi.org/None
arxiv:2004.10934
Bottou, L. (2012). Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade: Second Edition, 421-436.
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(34), 445-453.
Darkpgmr. (2020). Dark label. https://github.com/darkpgmr/DarkLabel
De Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean absolute percentage error for regression models. Neurocomputing, 192, 38-48.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88(2), 303-338. https://doi.org/10.1007/s11263-009-0275-4
FAOSTAT. (2022). Food and Agriculture Organization of the United Nations. FAOSTAT. http://www.fao.org/faostat/en/?#data
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
Guo, Y., Aggrey, S. E., Wang, P., Oladeinde, A., & Chai, L. (2022). Monitoring Behaviors of Broiler Chickens at Different Ages with Deep Learning. Animals, 12(23), 3390. https://doi.org/10.3390/ani12233390
Heartex. (2015). LabelImg. https://github.com/heartexlabs/labelImg
Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of Yolo algorithm developments. Procedia Computer Science, 199, 1066-1073.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Kashiha, M., Pluk, A., Bahr, C., Vranken, E., & Berckmans, D. (2013). Development of an early warning system for a broiler house using computer vision. Biosystems Engineering, 116(1), 36-45. https://doi.org/10.1016/j.biosystemseng.2013.06.004
Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval research logistics quarterly, 2(1‐2), 83-97.
Lee, S., & Lee, D. K. (2018). What is the proper way to apply the multiple comparison test? Korean journal of anesthesiology, 71(5), 353-360.
Lin, C.-Y., Hsieh, K.-W., Tsai, Y.-C., & Kuo, Y.-F. (2020). Automatic Monitoring of Chicken Movement and Drinking Time Using Convolutional Neural Networks. Transactions of the ASABE, 63(6), 2029-2038. https://doi.org/10.13031/trans.13607
Lott, B., Simmons, J., & May, J. (1998). Air velocity and high temperature effects on broiler performance. Poultry science, 77(3), 391-393.
Manning, C., & Schutze, H. (1999). Foundations of statistical natural language processing. MIT press.
Milan, A., Leal-Taixé, L., Reid, I., Roth, S., & Schindler, K. (2016). MOT16: A benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831.
Mirjalili, S., & Mirjalili, S. (2019). Genetic algorithm. Evolutionary Algorithms and Neural Networks: Theory and Applications, 43-55.
Neethirajan, S. (2022). ChickTrack–a quantitative tracking tool for measuring chicken activity. Measurement, 191, 110819.
Pereira, D. F., Miyamoto, B. C., Maia, G. D., Sales, G. T., Magalhães, M. M., & Gates, R. S. (2013). Machine vision to identify broiler breeder behavior. Computers and Electronics in Agriculture, 99, 194-199.
Purswell, J. L., Dozier III, W. A., Olanrewaju, H. A., Davis, J. D., Xin, H., & Gates, R. S. (2012). Effect of temperature-humidity index on live performance in broiler chickens grown from 49 to 63 days of age. 2012 IX International Livestock Environment Symposium (ILES IX),
Siriani, A. L. R., Kodaira, V., Mehdizadeh, S. A., De Alencar Nääs, I., De Moura, D. J., & Pereira, D. F. (2022). Detection and tracking of chickens in low-light images using YOLO network and Kalman filter. Neural Computing and Applications, 34(24), 21987-21997. https://doi.org/10.1007/s00521-022-07664-w
Statistical Illustration of Livestock Husbandry. (2021).
Sun, Q., Wu, T., Zou, X., Qiu, X., Yao, H., Zhang, S., & Wei, Y. (2019). Multiple object tracking for yellow feather broilers based on foreground detection and deep learning. INMATEH-Agricultural Engineering(2).
Wang, C.-Y., Bochkovskiy, A., & Hong, Y. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv pre-print server. https://doi.org/None arxiv:2207.02696
Wojke, N., Bewley, A., & Paulus, D. (2017). Simple online and realtime tracking with a deep association metric. 2017 IEEE international conference on image processing (ICIP),
Yu, Z., Liu, L., Jiao, H., Chen, J., Chen, Z., Song, Z., Lin, H., & Tian, F. (2022). Leveraging SOLOv2 model to detect heat stress of poultry in complex environments. Frontiers in Veterinary Science, 9.
Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., & Wang, X. (2022). ByteTrack: Multi-object Tracking by Associating Every Detection Box. In Computer Vision–ECCV 2022: 17th European Conference (pp. 1-21). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-20047-2_1
Zhu, X., Wu, C., Yang, Y., Yao, Y., & Wu, Y. (2022, 2022). Automated Chicken Counting Using YOLO-v5x Algorithm.
Zhuang, X., Bi, M., Guo, J., Wu, S., & Zhang, T. (2018). Development of an early warning algorithm to detect sick broilers. Computers and Electronics in Agriculture, 144, 102-113.
Zhuang, X., & Zhang, T. (2019). Detection of sick broilers by digital image processing and deep learning. Biosystems Engineering, 179, 106-116.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88831-
dc.description.abstract雞肉在全球蛋白質供應鏈中佔有重要地位,隨著市場需求不斷增長,採取集約化飼養方式,將大量雞隻放置於同一環境中已經成為常態。在這種情況下,對於雞群生長狀態的持續監控成為確保產量穩定的關鍵要素。傳統上,雞隻的張嘴行為、散佈程度和活動力都是由人工監控,然而這種方式不僅耗時且耗力,並且難以實現即時異常偵測。為解決上述問題,本研究提出了預警系統,藉由量化雞隻的張嘴行為、散佈程度與活動力,進行監測。預警系統由多台嵌入式設備、Wi-Fi網狀網路、雞隻張嘴偵測模型和雞隻追蹤模型組成。嵌入式系統包含鏡頭分別安裝在雞舍的支柱和橫樑上,從側視和俯視角度捕捉雞隻的影像,再透過Wi-Fi網狀網路傳送到雲端伺服器儲存。雞隻張嘴偵測模型用於偵測側視影像中的雞隻頭部,並將其分為兩類:張嘴與未張嘴。透過雞隻張嘴偵測模型偵測結果,可計算張嘴雞隻占所有偵測到的雞隻比例。雞隻偵測與追蹤模型用於偵測俯視影像中的雞隻位置,並利用最近臨演算法與Bytetrack演算法,分別計算雞隻的散佈程度與活動力。經過量化完成之張嘴雞隻比例、散佈程度與活動力,分別使用平均值與標準差、自回歸整合移動平均(ARIMA)的95%信賴區間、以及季節性自回歸整合移動平均模型含有外生變數(SARIMAX)的95%信賴區間來確定其安全區間。當數值超出該安全區間的數值即被認為是警告。在結果方面,雞隻張嘴偵測模型在雞隻頭部的分類與偵測上,整體平均精度達到91.3%。雞隻偵測與追蹤模型在雞隻偵測上,平均精度達到95.8%,再多目標追蹤準確率達到89.5%。此外,在自回歸整合移動平均模型的平均絕對百分比誤差達到3.44%,而季節性自回歸整合移動平均模型含有外生變數的平均絕對百分比誤差達到13.76%。本研究提供了一個完整且全自動化的預警系統,旨在為雞場管理員提供實時且有效的數據支援,以便他們能更有效地管理雞場。zh_TW
dc.description.abstractChicken is a major source of dietary protein worldwide. To meet the growing demand for chicken meat, chickens are usually raised using intensive farming approach, in which thousands of chickens are housed together. To ensure chicken production, it is essential to monitor the chickens. Typical monitoring indicators include open beak (OB) behavior, spatial dispersion, and movement of chickens. Conventionally, chicken monitoring was achieved in routinely patrol. However, manually monitoring a large flock of chickens is time-consuming and may not detect adverse events in real-time. Thus, this study proposes to monitor OB behavior, spatial dispersion, and movement of chickens on commercial farms using machine vision. The proposed early warning system comprised customized embedded systems, Wi-Fi mesh, an open-beaked behavior detection model (OBDM), and a chicken detection and tracking model (CDTM). The customized embedded systems comprised single board computers and cameras installed on pillars and roof beams to acquire side-view and top-view videos, respectively, of chickens. The acquired videos were transmitted to a cloud server through Wi-Fi mesh and 4G network. Subsequently, OBDM detected chicken heads in the side-view videos and quantified the ratio of the chickens with OB behaviors (also referred to as OB ratio). CDTM localized chickens in the top-view videos, tracked the chickens and quantified spatial dispersion and movement of the chickens using nearest neighbor (NN) and Bytetrack algorithm, respectively. The safe zones of OB ratio, dispersion, and movement, respectively, were determined using mean and standard deviation, 95% confidence intervals of autoregressive integrated moving average (ARIMA), and 95% confidence intervals seasonal autoregressive integrated moving average with exogenous factors (SARIMAX). The values outside the safe zones were considered as warnings. OBDM achieved an overall mAP of 91.3% in chicken head detection. CDTM achieved a mAP of 95.8% in chicken localization. CDTM achieved an overall MOTA of 89.5% in chicken tracking. The ARIMA and SARIMAX models, respectively, achieved a mean absolute percentage error (MAPE) of 3.44% and 13.76%. This research can provide an assistance for chicken farmers to more efficiently manage their farms.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:58:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:58:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGEMENTS I
摘要 II
ABSTRACT III
TABLE OF CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES X
CHAPTER 1 INTRODUCTION 1
1.1 Background of the study 1
1.2 Objectives 2
1.3 Organization 2
CHAPTER 2 LITERATURE REVIEW 3
2.1 Traditional approaches for chicken monitor 3
2.2 Image processing-based approaches for chicken monitor 3
2.3 Deep learning-based approaches for chicken localization and tracking 4
CHAPTER 3 MATERIALS AND METHODS 6
3.1 Overview of the system 6
3.2 Experimental site 7
3.3 Embedded system 7
3.4 Image collection and annotation 9
3.5 OB behavior detection and quantification 11
3.6 Chicken detection and spatial dispersion and movement quantification 12
3.7 Monitoring of chicken OB behavior, spatial dispersion, and movements 14
CHAPTER 4 RESULTS AND DISCUSSION 16
4.1 Performance of the OB behavior detection 16
4.2 Analysis of chicken OB ratio 18
4.3 Performance of the chicken detection and tracking 20
4.4 Analysis of chicken spatial dispersion and movement 22
4.5 Monitoring and warning of chicken OB behavior, spatial dispersion, and movement 25
CHAPTER 5 CONCLUSION 34
REFERENCE 35
-
dc.language.isoen-
dc.title利用卷積神經網路建立雞隻張嘴行為、散佈程度與活動力之預警系統zh_TW
dc.titleEarly Warning System for Open Beak Behavior, Spatial Dispersion, and Movement of Chickens Using Convolutional Neural Networksen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝明昆;陳永耀;陳志維zh_TW
dc.contributor.oralexamcommitteeMing-Kun Hsieh;Yung-Yao Chen;Zhi-Wei Chenen
dc.subject.keyword嵌入式系統,最近臨演算法,Bytetrack演算法,深度學習,zh_TW
dc.subject.keywordEmbedded system,Nearest neighbor (NN) algorithm,Bytetrack algorithm,Deep learning,en
dc.relation.page37-
dc.identifier.doi10.6342/NTU202302365-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-01-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf4.52 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved