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摘要 

雞肉在全球蛋白質供應鏈中佔有重要地位，隨著市場需求不斷增長，採取集約化飼

養方式，將大量雞隻放置於同一環境中已經成為常態。在這種情況下，對於雞群生

長狀態的持續監控成為確保產量穩定的關鍵要素。傳統上，雞隻的張嘴行為、散佈

程度和活動力都是由人工監控，然而這種方式不僅耗時且耗力，並且難以實現即時

異常偵測。為解決上述問題，本研究提出了預警系統，藉由量化雞隻的張嘴行為、

散佈程度與活動力，進行監測。預警系統由多台嵌入式設備、Wi-Fi 網狀網路、雞

隻張嘴偵測模型和雞隻追蹤模型組成。嵌入式系統包含鏡頭分別安裝在雞舍的支柱

和橫樑上，從側視和俯視角度捕捉雞隻的影像，再透過 Wi-Fi 網狀網路傳送到雲端

伺服器儲存。雞隻張嘴偵測模型用於偵測側視影像中的雞隻頭部，並將其分為兩類：

張嘴與未張嘴。透過雞隻張嘴偵測模型偵測結果，可計算張嘴雞隻占所有偵測到的

雞隻比例。雞隻偵測與追蹤模型用於偵測俯視影像中的雞隻位置，並利用最近臨演

算法與 Bytetrack 演算法，分別計算雞隻的散佈程度與活動力。經過量化完成之張

嘴雞隻比例、散佈程度與活動力，分別使用平均值與標準差、自回歸整合移動平均

（ARIMA）的 95%信賴區間、以及季節性自回歸整合移動平均模型含有外生變數

（SARIMAX）的 95%信賴區間來確定其安全區間。當數值超出該安全區間的數值

即被認為是警告。在結果方面，雞隻張嘴偵測模型在雞隻頭部的分類與偵測上，整

體平均精度達到 91.3%。雞隻偵測與追蹤模型在雞隻偵測上，平均精度達到 95.8%，

再多目標追蹤準確率達到 89.5%。此外，在自回歸整合移動平均模型的平均絕對百

分比誤差達到 3.44%，而季節性自回歸整合移動平均模型含有外生變數的平均絕對

百分比誤差達到 13.76%。本研究提供了一個完整且全自動化的預警系統，旨在為

雞場管理員提供實時且有效的數據支援，以便他們能更有效地管理雞場。 

關鍵詞：嵌入式系統、最近臨演算法、Bytetrack演算法、深度學習 
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ABSTRACT 

Chicken is a major source of dietary protein worldwide. To meet the growing demand for 

chicken meat, chickens are usually raised using intensive farming approach, in which 

thousands of chickens are housed together. To ensure chicken production, it is essential to 

monitor the chickens. Typical monitoring indicators include open beak (OB) behavior, 

spatial dispersion, and movement of chickens. Conventionally, chicken monitoring was 

achieved in routinely patrol. However, manually monitoring a large flock of chickens is 

time-consuming and may not detect adverse events in real-time. Thus, this study proposes 

to monitor OB behavior, spatial dispersion, and movement of chickens on commercial 

farms using machine vision. The proposed early warning system comprised customized 

embedded systems, Wi-Fi mesh, an open-beaked behavior detection model (OBDM), and 

a chicken detection and tracking model (CDTM). The customized embedded systems 

comprised single board computers and cameras installed on pillars and roof beams to 

acquire side-view and top-view videos, respectively, of chickens. The acquired videos were 

transmitted to a cloud server through Wi-Fi mesh and 4G network. Subsequently, OBDM 

detected chicken heads in the side-view videos and quantified the ratio of the chickens with 

OB behaviors (also referred to as OB ratio). CDTM localized chickens in the top-view 

videos, tracked the chickens and quantified spatial dispersion and movement of the 

chickens using nearest neighbor (NN) and Bytetrack algorithm, respectively. The safe 

zones of OB ratio, dispersion, and movement, respectively, were determined using mean 

and standard deviation, 95% confidence intervals of autoregressive integrated moving 

average (ARIMA), and 95% confidence intervals seasonal autoregressive integrated 

moving average with exogenous factors (SARIMAX). The values outside the safe zones 

were considered as warnings. OBDM achieved an overall mAP of 91.3% in chicken head 
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detection. CDTM achieved a mAP of 95.8% in chicken localization. CDTM achieved an 

overall MOTA of 89.5% in chicken tracking. The ARIMA and SARIMAX models, 

respectively, achieved a mean absolute percentage error (MAPE) of 3.44% and 13.76%. 

This research can provide an assistance for chicken farmers to more efficiently manage 

their farms. 

Keywords. Embedded system, nearest neighbor (NN) algorithm, Bytetrack algorithm, 

deep learning. 
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CHAPTER 1 INTRODUCTION 

1.1 Background of the study 

Chicken is a major source of dietary protein worldwide. In 2021, approximately 122 million 

metric tons of poultry meat were produced worldwide, generating a revenue of $21.2 billion 

US dollars (Food and Agriculture Organization, 2022). In Taiwan, around 680 thousand 

metric tons of chicken products were produced in 2021, accounting for 27.63% of the total 

animal husbandry sales of the year (Council of Agriculture, Executive Yuan, Taiwan, 2021). 

Among the chickens, Taiwanese native chickens (TNC) are popular varieties in the 

domestic market, accounting for 28.48% of the chicken meat market in 2022. These 

varieties are compared with broiler. Although there exist several recurring problems that 

impact chicken farming, such as disease outbreaks (Bureau of Animal and Plant Health 

Inspection and Quarantine, Executive Yuan, Taiwan, 2023) and fluctuation of feed costs 

(National Animal Industry Foundation, Taiwan, 2021), the TNC industry has continued to 

grow and expand at a steady pace. 

Daily patrol is a routine in the management of TNCs in conventional chicken farming. 

TNCs are typically raised using floor-rearing approach with intensive densities and have a 

growth period of 12 to 13 weeks. Because of the long growth period, chicken farmers must 

invest significant efforts in maintaining chicken health and environmental comfortability 

to prevent loss. Maintaining a comfortable temperature and odor-free litter is the key to 

keep the health of TNCs. In the daily patrol, three key indices of chickens are observed: 

open beak (OB) behavior, spatial dispersion, and movement. The OB behavior can serve as 

an essential indicator of heat stress, as chickens tend to open beaks and pant when 

overheated. The spatial dispersion can provide important insights about the environmental 
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conditions or stress, as chickens often cluster together in stressful situations or poor 

environmental conditions. The movement can be a reliable indicator of overall health and 

wellbeing, with changes in movement patterns potentially suggesting a range of issues, 

from environmental discomfort to illness or injury. Conventional patrols in farms to 

monitor a large flock of chickens are, however, time-consuming and laborious. Thus, this 

study proposes to monitor OB behavior, spatial dispersion, and movement of chickens on 

a commercial chicken farm using machine vision. 

1.2 Objectives 

This proposed monitoring system comprised three components: 1) customized embedded 

imaging system to acquire videos of TNCs from side view and top view, 2) two 

convolutional neural networks (CNNs) to detect chicken mouths and chickens from the 

side-view and top-view videos, respectively, and 3) a warning model that detect anomalous 

OB behavior, spatial dispersion, and movement. This monitoring warning system enhances 

the ability of chicken farmers to detect potential health risks and environmental hazards in 

chickens. 

1.3 Organization 

The remaining of this document is organized as follows. In Chapter 2, research of 

traditional approaches, research of image processing-based approaches, and research of 

deep learning-based approaches in chicken monitoring are review. In Chapter 3, the 

collection of videos is presented first. The chicken detection and quantification algorithms 

are then presented. Last, the warning models are presented. The results of this research are 

presented in Chapter 4. The conclusions of this study are given in Chapter 5. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Traditional approaches for chicken monitor 

Conventionally, chicken monitoring was evaluated using manual observation and 

environmental sensors. Lott et al. (1998) measured and controlled air velocities to enhance 

the weight gain of broilers. Purswell et al. (2012) determined the threshold of heat stress in 

chickens by using a temperature and humidity sensor. However, previous studies relied on 

indirect indicators that were unable to accurately represent the subjective experiences of 

chickens. Therefore, the behavioral characteristics of chickens were considered as more 

reliable indices. 

2.2 Image processing-based approaches for chicken monitor 

Applying image processing-based methods provides an effective and efficient approach for 

monitoring chicken. The implementation of image processing-based monitoring system 

enables continuous and non-intrusive monitoring of chicken. Several studies have 

successfully employed image processing methods to for this purpose. Aydin et al. (2010) 

analyzed different gait score groups to measure the chicken activities from top-view images 

by calculating the difference of the pixel values between with the previous image. Pereira 

et al. (2013) identified the behavior of white broiler hens from top-view images by applying 

a combination of image processing and classification tree, which achieved an accuracy of 

70%. Kashiha et al. (2013) developed an animal distribution index to identify abrupt 

declines in the broiler distribution from top-view images by applying a linear real-time 

prediction model, which achieved an accuracy of 95.2%. Zhuang et al. (2018) skeletonized 

a chicken by applying K-means clustering and thinning method. Subsequently, the SVM 

algorithm was used to recognize the healthy or sick chicken’s head and achieved an 
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accuracy of 99.5%. However, many of these studies were conducted in controlled 

experimental settings that exhibited limitations in generalizability and may only work well 

under specific conditions. Considering that most commercial chicken farms are naturally 

illuminated and have complex backgrounds in Taiwan, it is necessary to apply a more 

optimal and objective approach.  

2.3 Deep learning-based approaches for chicken localization and tracking 

In recent years, convolutional neural networks (CNNs), a method within deep learning 

model, have emerged as an effective solution for addressing sophisticated tasks in machine 

vision. The CNN model comprises millions of neurons to learn the key features from input 

images. Zhuang and Zhang (2019) identified sick broilers within a flock by applying a CNN 

of an improved feature fusion single-shot multibox detector architecture. Guo et al. (2022) 

detected chicken behaviors (i.e., feeding, drinking, standing, and resting) at different ages 

by applying a CNN of DenseNet-264 network architecture. Yu et al. (2022) detected 

poultry heat stress state (i.e., wing droop, wing spread, and open mouth panting) by 

applying a CNN of the improved FPN-DenseNet-SOLO model. Zhu et al. (2022) proposed 

a method to count chickens by applying a CNN of you only look once version 5x (YOLO 

v5x; Jiang et al., 2022) architecture. Furthermore, certain studies have successfully 

combined CNN models with tracking algorithms to provide an efficient monitoring system 

for chicken farmers. Lin et al. (2020) localized chickens by applying a CNN of Faster R-

CNN model and tracked the detected chickens by applying a simple online and real-time 

tracking algorithm (SORT; Bewley et al., 2016). Sun et al. (2019) improved the tracking of 

aggregation behavior in broilers by using a CNN of You Only Look Once—version 3 and 

tracking algorithms of Kalman filter (Kalman, 1960) and Hungarian algorithm (Kuhn, 

1955). Siriani et al. (2022) successfully detected and tracked chickens to calculate chicken 
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movement in low-resolution videos by applying a CNN of the modified YOLO v4 

architecture (Bochkovskiy et al., 2020) and a Kalman filter. Neethirajan (2022) improved 

the process of tracking chickens by applying a CNN of YOLO v5 and a deep SORT (Wojke 

et al., 2017). The aforementioned studies provide evidence that tracking-by-detection 

strategies can effectively and precisely perform in numerous applications. 
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CHAPTER 3 MATERIALS AND METHODS 

3.1 Overview of the system 

The system for monitoring chicken was composed of three components: a) embedded 

systems, b) two deep learning models (open-beaked behavior detection model, OBDM; 

chicken detection and tracking model, CDTM), and c) warning models (Configuration of 

the chicken house: (I) feeding equipment, (II) water dispensers, and (III) transparent 

glass.Figure 3.1). The embedded systems recorded side-view and top-view videos of 

chickens and collected the temperature in chicken farms. The OBDM detected chicken 

heads in the side-view videos and quantified the ratio of the chickens with OB behaviors 

(also referred to as OB ratio). The CDTM localized and tracked chickens in the top-view 

videos and, subsequently, quantified the spatial dispersion and movement of the chickens. 

The warning model determined the safe zones of the OB ratio, spatial dispersion, and 

movement of the chickens (Figure 3.1d). 

 
Figure 3.1 Flowchart of the proposed system. 
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3.2 Experimental site 

The experiment was conducted at Hsin-Ho chicken house (Leadray Livestock Co., Ltd; 

Huwei, Yunlin, Taiwan; Figure 3.2). The house was approximately 113 × 14.8 m and was 

equipped with feeding buckets (I in Figure 3.2) and water dispensers (II in Figure 3.2). The 

house was naturally illuminated using transparent glasses in the side wall (III in Figure 3.2), 

making the illumination conditions vary considerably. Approximately twenty thousand red-

feathered TNCs were raised in the house. In this study, the term "chicken" specifically 

refers to red-feathered TNC, which is a popular variety in Taiwan. A Wi-Fi mesh network 

was developed in the house to provide seamless Wi-Fi coverage throughout the house. 

 
Figure 3.2 Configuration of the chicken house: (I) feeding equipment, (II) water dispensers, and (III) 

transparent glass. 

3.3 Embedded system 

Each embedded system was composed of a single board computer (Raspberry Pi 3 Model 

B+, Raspberry Pi Foundation; Cambridge, UK), a camera, and a watertight box. Webcams 

(HD Pro C920, Logitech; Lausanne, Switzerland) were used as the cameras for acquiring 

side-view videos. Wide-angle distortion-free USB cameras (KS2A17, Kingsen; Shenzhen, 
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China) were used as the cameras for acquiring top-view videos. Temperature sensors (SHT 

31, Sensirion; Stäfa, Switzerland) were integrated into the side-view embedded systems to 

collect temperature data. 

A total of two and four embedded systems, respectively, were installed for acquiring side-

view and top-view videos from two regions in the chicken house (Figure 3.3a). The side-

view embedded systems (SV1 and SV2) were installed on pillars in the chicken house and 

were approximately 0.4 m above the ground (Figure 3.3b). The top-view embedded systems 

(TV1, TV2, TV3, and TV4) were installed on beams of the chicken house and were 

approximately 3.0 m above the ground (Figure 3.3c). The side-view and top-view 

embedded systems were deployed in two regions, denoted as Region 1 and Region 2 for 

the purpose of video acquisition. Videos were acquired at a resolution of 1920 × 1080 and 

1280 × 1024 pixels, respectively, for the side-view and top-view videos. Each video was 

acquired at 5 frames per second (fps) and was 5-minute long. The temperature of the 

chicken house was measured every minute. The videos and environmental information 

were uploaded to a cloud storage through the Wi-Fi mesh network. 
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Figure 3.3 (a) The positions of the embedded systems in the chicken house. The side-view and top-view 

embedded systems were installed on (b) pillars and (c) beams, respectively. 

3.4 Image collection and annotation 

The side-view and top-view videos were collected between May and November, 2022. 

During the period, two batches of chickens were raised. The chickens were brought into the 

house when they were 4-week old and were sent for slaughter when they were 10-week old. 

The first batch was raised between May and July, whereas the second batch was raised 

between September and November. The videos of the chickens were collected continuously 

between 06:00 and 18:00. More than 1,400 hours of side-view and top-view videos were 

collected. Certain videos were missing due to network instability. A thousand images were 

randomly converted from the side-view and top-view videos, respectively, for model 

training and test (Figure 3.4). 
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Figure 3.4 Collected (a) side-view and top-view images and the annotations. 

For the side-view images, chicken heads larger than 40 pixels were annotated. The 

annotated chicken heads were categorized into OB and non-OB behaviors. A chicken with 

a beak-tip open greater than 10 pixels were defined as an OB (Figure 3.5a); otherwise, it 

was classified as non-OB (Figure 3.5b). For the top-view images, chickens were annotated 

(Figure 3.4b). The annotation was performed using LabelImg (Heartex, 2015). The 

annotated images were split into training and test dataset at a ratio of 4:1 (Table 3.1). 

 
Figure 3.5 Chicken heads with (a) OB and (b) non-OB behaviors. 

Table 3.1 Amount of training and test images and annotated bounding boxes (BBs). 

Perspective Category 
Images BBs 

Training Test Training Test 

Side view 
OB 

800 200 
4,475 1,465 

Non-OB 5,687 2,388 
Top view Chicken 800 200 113,161 30,888 
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3.5 OB behavior detection and quantification  

You Only Look Once—version 7 tiny (YOLO v7-tiny; Wang et al., 2022) was used as the 

architecture for OBDM to detect chickens with OB and non-OB behaviors in the side-view 

images. To train the model, the dimension of the input images to OBDM was set to 640 × 

640 pixels. Online image augmentations were next implemented to enhance model 

robustness during training. The augmentation operations included hue, saturation, 

brightness, horizontal flipping, mosaic and mix-up. Stochastic gradient descent (SGD; 

Bottou, 2012) was used as the optimizer.  

The hyperparameters of the OBDM, including image augmentations. SGD, and learning 

rate, were selected using genetic algorithm (Mirjalili & Mirjalili, 2019). Five initial 

population, containing five sets of the hyperparameters as chromosomes, iterated 300 

generations with a mutation probability of 0.8. A fitness function was used to evaluate the 

hyperparameters during the mutation and evolutionary process. The fitness function was 

defined as a weighted combination of mean average precision (mAP) at an intersection-

over-union (IoU) threshold of 0.5 (mAP@0.5) and mAP at IoU thresholds between 0.5 and 

0.95 (mAP@0.5:0.95). The weights of mAP@0.5 and mAP@0.5:0.95 were 0.2 and 0.8, 

respectively. According to the optimized hyperparameters, the hue, saturation, and 

brightness were applied to each training image by multiplying a uniform random value 

between 1±0.015, 1±0.71, and 1±0.458, respectively. The horizontal flipping, mosaic, and 

mix-up were applied to the images with a probability of 0.415, 0.8 and 0.0362, respectively. 

The momentum and weight decay of SGD were configured as 0.98 and 0.0058, respectively. 

The model was trained for 300 epochs with a batch size of 32. The learning rate was 

warmed up to 0.00758 in 2.4 epochs and decreased to 0.0000758 at the end of the model 
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training. A GPU (TITAN RTX, NVIDIA; Santa Clara, USA) was used for training the 

model. 

After the model training, the OB behaviors was computed as the ratio of chickens with OB 

behavior to the total number of chickens in the images (i.e., OB ratio). Each OB ratio was 

evaluated for a video of 5-minute length (i.e., 1500 frames). 

3.6 Chicken detection and spatial dispersion and movement quantification 

The CDTM was composed of a convolutional neural network for chicken localization, 

nearest neighbor (NN; Clark & Evans, 1954) algorithm for calculating the spatial dispersion 

of chickens, and Bytetrack algorithm (Zhang et al., 2022) for calculating chicken 

movements. YOLO v7-tiny was again used to localize chickens in CDTM. The dimension 

of the input images to the CDTM was set to 416 × 416 pixels before the model training. 

The online augmentation operations, including hue, saturation, brightness, horizontal 

flipping, mosaic and mix-up, enhanced model robustness. SGD was used as the optimizer.  

The hyperparameters of the CDTM, including image augmentations. SGD, and learning 

rate, were selected using genetic algorithm. Five initial population, containing five sets of 

the hyperparameters as chromosomes, iterated 300 generations with a mutation probability 

of 0.8. The fitness function was used the same as the OBDM. According to the optimized 

hyperparameters, the hue, saturation, and brightness were applied to each training image 

by multiplying a uniform random value between 1±0.015, 1±0.7, and 1±0.4, respectively. 

The horizontal flipping, mosaic and mix-up were applied to the images with a probability 

of 0.5, 1 and 0.05, respectively. The momentum and weight decay of SGD were configured 

as 0.937 and 0.0005, respectively. The model was trained for 300 epochs with a batch size 

of 16. The learning rate was warmed up to 0.001 in 3 epochs and decreased to 0.00001 at 
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the end of the model training. A GPU (TITAN RTX, NVIDIA; Santa Clara, USA) was used 

for training the model.  

The spatial dispersion of the chickens in an image was quantified using the centroids of the 

chickens detected by the YOLO v7-tiny and NN algorithm in CDTM. Spatial dispersion 

was calculated as: 

Dispersion =  
𝐷

𝐷
, (1) 

where 𝐷  is the average distance between each chicken and its nearest neighbor in the 

image and 𝐷  is the expected average distance between each chicken and its nearest 

neighbor. A dispersion value indicated the densely populated chickens, whereas a low 

dispersion value indicated the sparsely populated chickens. The spatial dispersion of a 5-

minute video was calculated as the average of the dispersion values computed for each of 

the 1500 frames in the video, yielding a total of 110 dispersion values daily. 

The movement of the chickens was quantified using the centroids of the chickens detected 

by the YOLO v7-tiny in CDTM in consecutive frames (i.e., 1500 frames in a 5-minute 

video) and Bytetrack algorithm. The Bytetrack algorithm was employed to track for all 

detected BBs in order to improve tracking performance instead of solely focusing on high 

confidence score BBs. The Bytetrack algorithm predicted the centroids of chicken and BB 

dimensions by incorporating the information from the previous frame. The BBs (i.e. 

chicken) detected by the YOLO v7-tiny were separated into high confidence score BBs and 

low confidence score BBs (e.g. occluded chickens), with a confidence threshold of 0.6. 

Initially, the high confidence score BBs were used to track the chicken with an IoU between 

consecutive frames higher than 0.5. When the IoU was lower than 0.5, the low confidence 

score BBs were used to track the chicken in consecutive frames. If the tracked BBs 
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remained unmatched for 50 frames, its centroid coordinates were removed. The Euclidean 

distance between the coordinates of the center of the successfully tracked chickens in 

consecutive frames was used to calculate the movement of each chicken. A movement 

value was yielded for each video of 5-minute length (i.e., 1500 frames), yielding a total of 

110 movement values daily.  

3.7 Monitoring of chicken OB behavior, spatial dispersion, and movements 

Mean and standard deviation of the OB ratios from the two batches was used to determining 

the threshold for the OB ratio. A high OB ratio can potentially induce heat stress. Thus, 

monitoring of the OB ratio was primarily oriented towards OB ratios exceeding the 

determined threshold. The threshold was established based on two standard deviations. The 

OB ratios below the threshold were defined as the normal. The OB ratios exceeding the 

threshold were defined as the preliminary warnings (yellow). If the preliminary warnings 

persisted for an hour, the OB ratios were upgraded to critical warnings (red). 

An autoregressive integrated moving average (ARIMA; Box et al., 2015) model was used 

to predict chicken dispersion and the safe zone of the dispersion. The dispersion values 

exhibited a positive correlation with the chicken growth (Figure 4.7). Thus, the dispersion 

was regarded as a time-series data. The ARIMA model predicted the mean dispersion 

values of a day using the daily mean dispersion values from past days. An ARIMA model 

includes three parameters: autoregressive (AR), integrated (I), and moving average (MA). 

The degree of I was set to 1, since the dispersion values were non-stationary. The order of 

AR and MA were set to 3 and 4, respectively, using Akaike information criterion. The 

ARIMA model also predicted the 95% confidence interval of the mean daily dispersion 

value. In this study, the 95% confidence interval of the dispersion value was marked as the 

safe zone. The dispersion values outside the 95% confidence interval were marked as 
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preliminary warnings (yellow). If the preliminary warnings persisted for an hour, the 

dispersion values were upgraded to critical warnings (red). 

A seasonal autoregressive integrated moving average with exogenous factors (SARIMA; 

Box et al., 2015) model was used to predict chicken movement and the safe zone of the 

movement. The movement exhibited a seasonal pattern by hour (Figure 4.9). Thus, the 

movement was regarded as a seasonal time-series data. The SARIMAX model predicted 

the mean hourly movement values of a day using the hourly mean movement values from 

past days. An SARIMAX model includes seven parameters: AR, I, MA, seasonal AR, 

seasonal I, seasonal MA, and seasonal period. The degree of I and seasonal I were set to 0 

and1, respectively, since the movement values with seasonal patterns were non-stationary. 

The order of AR, MA, seasonal AR, and seasonal MA were set to 0, 5, 3 and 2, respectively, 

using Akaike information criterion. The seasonal period was set to 12 because the 

maximum number of hourly mean movement values was collected from 06:00 to 18:00 

each day. Moreover, the hourly mean movement values and temperatures had an opposite 

trend. As a result, the temperature was considered an external variable to improve the model 

robustness and accuracy. The SARIMAX model also predicted the 95% confidence interval 

of the mean hourly movement value. In this study, the 95% confidence interval of the 

movement value was marked as the safe zone. The movement values outside the 95% 

confidence interval were marked as preliminary warnings (yellow). If the preliminary 

warnings persisted for 30 minutes, the movement values were upgraded to critical warnings 

(red). 
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CHAPTER 4 RESULTS AND DISCUSSION 

4.1 Performance of the OB behavior detection 

The detection performance of the OBDM was evaluated using receiver operating 

characteristic (ROC; Fawcett, 2006) analysis and the 200 side-view test images. In the 

evaluation, the confidence score threshold for positive detection was set to 0.25. A detection 

was regarded as a true positive (TP) if the IoU between two BBs predicted by the model 

and the corresponding ground truth (GT) exceeded 0.65; otherwise, it was regarded as a 

false positive (FP). A detection was regarded as a false negative (FN) if the predicted BB 

had no associated GT BB. The OBDM achieved an overall precision of 83.2%, an overall 

recall of 81.8%, an overall F1 score of 82.5%, and a mean average precision (mAP; 

Everingham et al., 2010) of 91.3% (Table 4.1) in chicken head detection. The precision-

recall curves (Manning & Schutze, 1999) and the confusion matrix of the two classes (OB 

and non-OB behaviors) were illustrated in Figure 4.1. 

Table 4.1 ROC of the OBDM. 

Category Precision (%) Recall (%) F1-score (%) AP (%) 
OB 81.8 85.9 83.8 92.4 

Non-OB 84.5 77.8 81.1 90.3 
Overall 83.2 81.8 82.5 91.3 

 

Figure 4.1 (a) Precision-recall curves and (b) confusion matrix of the open-beaked behavior detection 
model. 
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To assess the robustness of the trained OBDM, four challenging scenarios were examined: 

chickens of various ages, insufficient illumination, occlusion, and rear-facing chicken 

(Figure 4.2). In certain scenarios, images of 5-week-old and 10-week-old (Figure 4.2a and 

4.2b) chickens were collected. The chickens exhibited distinct features on their heads. In 

certain other scenarios, the illuminations of the images were low (Figure 4.2c and 4.2d). 

Nevertheless, the chickens were successfully detected and accurately classified in these 

scenarios. However, in certain other scenarios, FP or FN occurred. In certain other 

scenarios, chickens overlapped each other and the details of the occluded chickens were 

missing, resulting in FP (Figure 4.2e) or FN (Figure 4.2f) detections. In certain other 

scenarios, chickens faced away from the camera and the visible details of the chicken 

mouths were minimal, resulting in FP (Figure 4.2g) or FN (Figure 4.2h) detections. 

 
Figure 4.2 The challenging scenarios of open-beaked behavior detection: (a) and (b) chickens of various 

ages, (c) and (d) insufficient illumination, (e) and (f) occlusion, and (g) and (h) rear-facing chicken. Yellow, 
pink, and purple BBs indicate GT, OB behavior, and non-OB behavior, respectively. 
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4.2 Analysis of chicken OB ratio 

The mean daily OB ratios and temperatures of the two side-view embedded systems (i.e., 

SV1 and SV2) for the two batches of chickens were illustrated (Figure 4.3). The results 

indicated that the mean daily OB ratio and temperature were moderately and positively 

correlated (rSV1 = 0.495, rSV2 = 0.589). For the videos acquired by SV1, the OB ratios 

between weeks 7 and 9 of the first batch were significantly higher than those of the second 

batch (Figure 4.3a and 4.3b; t-test: t = 7.384, p < 0.001). The mean temperatures between 

weeks 7 and 9 of the first and second batch were 33.2℃ and 28.3℃, respectively. Similarly, 

for the videos acquired by SV2, the mean OB ratios between weeks 7 and 9 of the first batch 

were significantly higher than those of the second batch (Figure 4.3c and 4.3d; t-test: t = 

3.597, p < 0.001). The mean temperatures between weeks 7 and 9 of the first and second 

batch were 32.5℃ and 28.2℃, respectively. These observations indicate that the chickens 

are sensitive to high temperatures and tend to exhibit higher OB ratios at higher 

temperatures. 
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Figure 4.3 Mean daily OB ratios and temperatures of the first and second batches acquired by SV1 and SV2: 

(a) and (b) the first and second batches of SV1 and (c) and (d) the first and second batches of SV2. 

The hourly OB ratios and temperatures between 06:00 and 18:00 of the two batches were 

illustrated (Figure 4.4). The OB ratios and temperatures had a similar trend (rSV1 = 0.952, 

rSV2 = 0.956). Both the OB ratios and temperatures were low in the morning and evening 

and peaked around 14:00. Scheffé’s multiple comparison tests (Lee & Lee, 2018) indicated 

that the mean OB ratios between 12:00 and 14:00 were significantly higher than those 

between 6:00 and 9:00 (ANOVA; SV1: F = 38.904, p < 0.001; SV2: F = 40.372, p < 0.001). 

This observation indicates that chicken OB ratios are subject to variation in accordance 

with the prevailing temperatures. 
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Figure 4.4 Hourly OB ratios and temperatures of the first and second batches acquired by SV1 and SV2: (a) 

and (b) the first and second batches of SV1 and (c) and (d) the first and second batches of SV2. 

4.3 Performance of the chicken detection and tracking 

The detection performance of the CDTM was evaluated using ROC analysis and the 200 

top-view test images. In the evaluation, the confidence score threshold for positive 

detection was set to 0.6. The IoU threshold for TP, FP, and FN detection was set to 0.65. 

The CDTM achieved a precision of 91.1%, a recall of 92.9%, a F1 score of 91.9%, and a 

mAP of 95.8% in chicken localization. The precision-recall curve of chicken localization 

was illustrated in Figure 4.5.  
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Figure 4.5 Precision-recall curve of the chicken localization in CDTM. 

To assess the robustness of the CDTM, five challenging scenarios were examined: chickens 

of various ages, overexposure, insufficient illumination, overlapping, and occlusion. In 

certain scenarios, images of 4-week-old and 10-week-old (Figure 4.6a and 4.6b) chickens 

were acquired. The chickens exhibited distinct features in their appearance. In certain other 

scenarios, the collected images were overexposed (Figure 4.6c) or with insufficient 

illumination (Figure 4.6d). Nevertheless, the chickens were successfully detected under 

these scenarios. However, in certain other scenarios, FN occurred. In certain other scenarios, 

several chickens overlapped each other (Figure 4.6e and 4.6f), resulting in FN detections. 

In other certain scenarios, chickens occluded by pipelines, pillars, feeding equipment, or 

water dispensers in the images (Figure 4.6g and 4.6h), resulting in FN detections. 
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Figure 4.6 The challenging scenarios of chicken localization: (a) and (b) chickens of various ages, (c) 

overexposure, (d) insufficient illumination, (e) and (f) overlapping, and (g) and (h) occlusion. Yellow and 
purple BBs indicate GT and chicken, respectively. 

The tracking performance of the CDTM was evaluated using multiple object tracking 

(MOT) metrics (Milan et al., 2016) and two videos of active and stationary chickens. The 

two videos contained 150 consecutive frames (30 s). The GTs of the chickens were labeled 

using Dark label (Darkpgmr, 2020). The CDTM approach achieved an overall MOT 

accuracy (MOTA) of 89.5% in chicken tracking (Table 4.2). 

Table 4.2 Evaluation result of chicken tracking in CDTM. 

Status Frame GT MT PT ML↓ IDs↓ Precision↑ Recall↑ MOTA↑ 
Active 150 274 237 29 8 15 96.0 % 90.3 % 86.4 % 

Stationary 150 116 109 7 0 1 96.8 % 95.7 % 92.5 % 
Overall 300 390 346 36 8 16 96.4 % 93.0 % 89.5 % 

Frame = number of frame; GT = number of piglets in the crate; MT = number of mostly tracked; PT = 
number of partially tracked; ML = number of mostly lost; IDs = ID switching; MOTA = multiple object 
tracking accuracy; ↑/↓= higher / lower scores denote be er performance. 

4.4 Analysis of chicken spatial dispersion and movement 

The mean hourly dispersion values and their 95% confidence intervals of the four top-view 

embedded systems (i.e., TV1, TV2, TV3, and TV4) for the two batches of chickens were 

illustrated (Figure 4.7). The mean hourly dispersion values increased gradually. For the 

videos acquired by TV1, TV2, TV3, and TV4, the correlation coefficients between dispersion 

and chicken age (in day) were between 0.657 and 0.931. The dimension of the chicken 
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house is fixed. Thus, the space between the chickens decreased as the chicken grew, 

contributing to an upward trend in dispersion. Moreover, the chickens exhibited a tendency 

to migrate towards the air inlet. Region 1 (i.e., TV1 and TV2; Figure 3.3a) were closer to 

the air inlet than Region 2 (i.e., TV3 and TV4). Thus, the mean dispersion values of TV1 

and TV2 were significantly larger than those of TV3 and TV4 (ANOVA; First batch: F = 

116.079, p < 0.001, Second batch: F = 156.529, p < 0.001). 

 
Figure 4.7 Mean hourly dispersion values of the first and second batches acquired by TV1, TV2, TV3, and 

TV4: (a)-(d) the first batch of TV1, TV2, TV3, and TV4 and (e)-(h) the second batch of TV1, TV2, TV3, and TV4. 

The mean hourly movement values and their 95% confidence intervals of the four top-view 

embedded systems (i.e., TV1, TV2, TV3, and TV4) for the two batches of chickens were 

illustrated (Figure 4.8). The results indicate that the movement and temperature were 

moderately and negatively correlated for the two batches (rTV1 = 0.488, rTV2 = 0.521, rTV3 

= 0.486, rTV4 = 0.369). For the videos acquired by TV1, TV2, TV3, and TV4, the mean 

hourly movement values of the first batch showed a decreasing trend (Figure 4.8a-d) 

because the mean temperatures between weeks 4 and 6 (31.29℃ at TV1 and TV2; 31.46℃ 

at TV3 and TV4) was lower than those between weeks 7 and 10 (33.31℃ at TV1 and TV2; 

32.67℃ at TV3 and TV4). Conversely, the mean hourly movement values of the second 

batch showed an increasing trend (Figure 4.8e-h) because the mean temperatures between 
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weeks 4 and 6 (31.53℃ at TV1 and TV2; 31.32℃ at TV3 and TV4) was higher than those 

between weeks 7 and 10 (28.38℃ at TV1 and TV2; 28.29℃ at TV3 and TV4). These 

observations indicate that the chickens tend to exhibit lower movement values at high 

temperatures.  

 
Figure 4.8 Mean hourly movement values of the first and second batches acquired by TV1, TV2, TV3, and 

TV4: (a)-(d) the first batch of TV1, TV2, TV3, and TV4 and (e)-(h) the second batch of TV1, TV2, TV3, and TV4. 

The hourly movement values and temperatures between 06:00 and 18:00 of the two batches 

were illustrated (Figure 4.9). The movement values and temperatures had an opposite trend 

(rTV1 = 0.611, rTV2 = 0.854, rTV3 = 0.692, rTV4 = 0.768). The movement values were 

high in the morning and evening and bottomed around noon. On the contrary, the 

temperatures were low in the morning and evening and peaked around noon. Scheffé’s 

multiple comparison tests indicated that the mean movement values between 12:00 and 

15:00 were significantly lower than those between 6:00 and 9:00 (ANOVA; TV1: F = 

109.674, p < 0.001; TV2: F = 106.218, p < 0.001; TV3: F = 98.828, p < 0.001; TV4: F = 

72.849, p < 0.001). This observation indicates that chicken movement is influenced by 

temperature. 
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Figure 4.9 Hourly movement values and temperatures of the first and second batches acquired by TV1, TV2, 
TV3, and TV4: (a)-(d) the first batch of TV1, TV2, TV3, and TV4 and (e)-(h) the second batch of TV1, TV2, TV3, 

and TV4. 

4.5 Monitoring and warning of chicken OB behavior, spatial dispersion, and 

movement 

The proposed approach was applied to detect anomalous OB behaviors (Figure 4.10). The 

overall mean and standard deviation of the OB ratio were 44.32% and 17.96%, respectively. 

The threshold was set to 80.24% (i.e., mean + 2 standard deviations). In Region 1 (i.e., 

SV1), 12 and 11 critical warning events, respectively, occurred in the first and second 

batches. The critical warning events occurred more frequently when the temperature 

exceeded 30℃. Conversely, in Region 2 (i.e., SV2), no critical warning events occurred in 

either the first or second batches. Despite there was only a mere temperature difference of 

1 to 2℃ between Regions 1 and 2, this small variation could have a significant impact on 

the critical warning events, especially when the temperature exceeded 30℃. 
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Figure 4.10 OB behavior in (a) Region 1 and (b) Region 2. The Roman numerals indicate cases to be 

discussed. 

Chicken dispersion was modeled using ARIMA and anomalous dispersion values were 

detected (Figure 4.11). The ARIMA model achieved an overall mean absolute percentage 

error (MAPE; De Myttenaere et al., 2016) of 3.44%, indicating that the proposed approach 

successfully described the change in chicken dispersion along the growth of the chickens. 

In the first batch, 14 and 7 critical warning events, respectively, occurred in Region 1 and 

Region 2. In the second batch, 18 and 11 critical warning events occurred in Region 1 and 

Region 2, respectively. 
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Figure 4.11 Chicken dispersion in (a) Region 1 and (b) Region 2. The Roman numerals indicate cases to be 

discussed. 
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Chicken movement was modeled using SARIMAX and anomalous movement values were 

detected (Figure 4.12). The SARIMAX model achieved an overall MAPE of 13.76%, 

indicating that the proposed approach successfully described the change in chicken 

movement. In the first batch, 29 and 27 critical warning events occurred in Region 1 and 

Region 2, respectively. In the second batch, 67 and 33 critical warning events, respectively, 

occurred in Region 1 and Region 2. Notably, Region 1 had the highest number of critical 

warning events in movement during the second batch, most of which surpassed the 

predicted safe zone. This observation implies that Region 1 potentially experienced a higher 

frequency of disturbances than Region 2. 
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Figure 4.12 Chicken movement in (a) Region 1 and (b) Region 2. The Roman numerals indicate cases to be 

discussed. 
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Four anomalous events in OB behaviors, dispersion value, and movement value were 

discussed: (I) unusually in the western region of the chicken house, (II) unusually in the 

eastern region of the chicken house, (III) a sudden decrease in temperature, and (IV) 

unusually movement values. Event (I) occurred on June 20, 2022, between 16:30 and 17:30 

(Figure 4.13). Anomalous dispersion values and OB ratios were observed. At the moment, 

the western regions of the chicken house (i.e., TV2 and TV4) were directly exposed to 

sunlight. Chickens migrated to the eastern regions, seeking shelter from intense sunlight 

and heat. Consequently, the mean dispersion values of TV2 (0.78) and TV4 (1.09), 

respectively, in the western region fell in the critical-warning and preliminary-warning 

zones of low dispersion value. By contrast, the mean dispersion values of TV1 (1.38) and 

TV3 (1.23), respectively, in the eastern region fell in the critical-warning and preliminary-

warning zones of high dispersion value. Moreover, due to a mean temperature of 34.4℃ 

and high dispersion values lasting for an hour in TV1, a mean OB ratio in SV1 reached 

85.72%, falling in the critical-warning zone. By contrast, due to high dispersion values 

lasting for 30 min in TV3, the mean OB ratio in SV2 (72.36%) below to the threshold. 

 
Figure 4.13 The top-view and side-view images in event (I) occurred on June 20, 2022, between 16:30 and 

17:30. 
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Event (II) occurred on October 9, 2022, between 6:30 and 7:00 between 6:30 to 7:00 (Figure 

4.14). At the time, the eastern regions of the chicken house (i.e., TV1 and TV3) were directly 

exposed to sunlight. Chickens migrated to the western regions, seeking shelter from intense 

sunlight and heat. Consequently, the mean dispersion values of TV1 (1.11) and TV3 (1.07) 

in the eastern region fell in the preliminary-warning zones of low dispersion value. By 

contrast, the mean dispersion values of TV2 (1.26) and TV4 (1.32), respectively, in the 

western region fell in the critical-warning and preliminary-warning zones of high 

dispersion value. Despite the crowding of chickens in TV2 and TV4, the OB ratios (SV1: 

47.58% and SV2: 42.04%) remained below the threshold (i.e., 80.24%) owing to the 

temperature of 25.2℃. 

 
Figure 4.14 The top-view and side-view images in event (II) occurred on October 9, 2022, between 6:30 

and 7:00. 

Event (III) occurred June 7, 2022, at 16:00. Low dispersion values and movement values 

were observed. At the moment, a sudden decrease in temperature occurred. The recorded 

temperature dropped from 31.6℃ at 11:00 to 26.6℃ at 16:00. At 11:00, both the dispersion 

values (TV1: 1.06, TV2: 1.11, TV3: 1.04, and TV4: 1.09) and movement values (TV1: 68.94 

mm/s, TV2: 54.29 mm/s, TV3: 69.51 mm/s, and TV4: 55.92 mm/s) in the two regions were 
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within the predicted safe zone (Figure 4.15a). Right after the temperature drop at 16:00, the 

chickens in Region 1 appeared to gather closely together (Figure 4.15b), resulting in low 

dispersion (TV1: 1.01 and TV2: 0.95) and movement (TV1: 31.12 mm/s and TV2: 41.65 

mm/s). By contrast, despite the sudden drop in temperature, the dispersion (TV3: 1.05 and 

TV4: 1.07) and movement (TV3: 55.18 mm/s and TV4: 57.57 mm/s) observed in Region 2 

remained in the predicted safe zone. The chickens in Region 2 appeared to gather around 

the feeding buckets and consume the provided feed. This discrepancy might suggest the 

possibility that the chicken in Region 1 were more susceptible to temperature changes. 

 
Figure 4.15 The top-view images in event (III) occurred on (a) June 7, 2022, at 11:00 and (b) at 16:00. 

Event (IV) occurred on November 1, 2022, between 6:30 and 10:30. At the moment, flocks 

of chickens moved consistently for 3 hours within the field of the camera, resulting in mean 

movement values of 122.34 mm/s, 122.86 mm/s, 124.32 mm/s, and 110.28 mm/s per 

chicken in the TV1, TV2, TV3, and TV4, respectively (Figure 4.16). By contrast, the overall 

mean movement value of the second batch was 66.46 mm/s, 72.52 mm/s, 81.09 mm/s, and 

71.66 mm/s per chicken in the TV1, TV2, TV3, and TV4, respectively. The underlying 

reasons for the extreme high movement values remain unknown, necessitating further 
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investigation. However, this observation indicates that the proposed approach of observing 

chicken movement is effective. 

 
Figure 4.16 The top-view images in event (IV) occurred on (a) November 1, 2022, between 6:30 and 10:30. 
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CHAPTER 5 CONCLUSION 

This study proposes an approach for automatically quantifying the OB behavior, dispersion, 

and movement of TNCs in commercial chicken farms. The OBDM detected chicken heads 

in the side-view videos, acquired by embedded systems installed on the pillars of the 

chicken house, and quantified the ratio of the chickens with OB behaviors (also referred to 

as OB ratio). The CDTM localized chickens in the top-view videos, acquired by embedded 

systems installed on the beams of the chicken house, tracked the chickens and quantified 

spatial dispersion and movement of the chickens using NN and Bytetrack algorithm, 

respectively. The safe zones of OB ratio, dispersion, and movement, respectively, were 

determined using mean and standard deviation, 95% confidence intervals of ARIMA, and 

95% confidence intervals SARIMAX. The values outside the safe zones were considered 

as warnings. OBDM achieved an overall mAP of 91.3% in chicken head detection. CDTM 

achieved a mAP of 95.8% in chicken localization. CDTM achieved an overall MOTA of 

89.5% in chicken tracking. The ARIMA and SARIMAX models, respectively, achieved a 

MAPE of 3.44% and 13.76%, indicating that the proposed approach successfully described 

the change in dispersion and movement. The proposed approach is objective and automated, 

potentially mitigating the necessity for manual patrols by chicken farmers in chicken farms. 
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