Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88784
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于天立zh_TW
dc.contributor.advisorTian-Li Yuen
dc.contributor.author方文忠zh_TW
dc.contributor.authorWen-Zhong Fangen
dc.date.accessioned2023-08-15T17:46:24Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citationP. J. Angeline and J. Pollack. Evolutionary module acquisition. In Proceedings of the Second Annual Conference on Evolutionary Programming, pages 154–163, 1993.
A. Asuncion and D. Newman. UCI machine learning repository, 2007.
P. A. Bosman and D. Thierens. Linkage neighbors, optimal mixing and forced improvements in genetic algorithms. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO ’12, page 585–592, New York, NY, USA, 2012.
A. Bouter, T. Alderliesten, C. Witteveen, and P. A. Bosman. Exploiting linkage information in real-valued optimization with the real-valued gene-pool optimal mixing evolutionary algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 705–712, 2017.
B. Burlacu, G. Kronberger, and M. Kommenda. Operon c++ an efficient genetic programming framework for symbolic regression. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pages 1562–1570, 2020.
P. L. Chen, C. J. Peng, C. Y. Lu, and T. L. Yu. Two-edge graphical linkage model for DSMGA-II. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, page 745–752, New York, NY, USA, 2017.
V. V. De Melo. Kaizen programming. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO ’14, page 895–902, New York, NY, USA, 2014.
B. He, Q. Lu, Q. Yang, J. Luo, and Z. Wang. Taylor genetic programming for symbolic regression. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 946–954, 2022.
T. Helmuth, L. Spector, and J. Matheson. Solving uncompromising problems with lexicase selection. IEEE Transactions on Evolutionary Computation, 19(5):630–643, 2014.
E. Hemberg, K. Veeramachaneni, J. McDermott, C. Berzan, and U.-M. O’Reilly. An investigation of local patterns for estimation of distribution genetic programming. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pages 767–774, 2012.
S.-H. Hsu and T.-L. Yu. Optimization by pairwise linkage detection, incremental linkage set, and restricted / back mixing: DSMGA-II. GECCO ’15, page 519–526, New York, NY, USA, 2015.
K. E. K. Jr. Evolving a sort: lessons in genetic programming. In IEEE International Conference on Neural Networks, pages 881–888 vol.2, 1993.
J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
K. Krawiec. Program synthesis, pages 1–19. Springer International Publishing, Cham, 2016.
W. La Cava, K. Danai, L. Spector, P. Fleming, A. Wright, and M. Lackner. Automatic identification of wind turbine models using evolutionary multiobjective optimization. Renewable Energy, 87:892–902, 2016.
W. La Cava, T. Helmuth, L. Spector, and K. Danai. Genetic programming with epigenetic local search. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15, page 1055–1062, New York, NY, USA, 2015.
W. La Cava, P. Orzechowski, B. Burlacu, F. de Franca, M. Virgolin, Y. Jin, M. Kommenda, and J. Moore. Contemporary symbolic regression methods and their relative performance. In J. Vanschoren and S. Yeung, editors, Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021.
W. La Cava, P. Orzechowski, B. Burlacu, F. O. de França, M. Virgolin, Y. Jin, M. Kommenda, and J. H. Moore. Contemporary symbolic regression methods and their relative performance. arXiv preprint arXiv:2107.14351, 2021.
W. La Cava, L. Spector, and K. Danai. Epsilon-lexicase selection for regression. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, pages 741–748, 2016.
Q. Lu, J. Ren, and Z. Wang. Using genetic programming with prior formula knowledge to solve symbolic regression problem. Computational Intelligence and Neuroscience, 2016:1–1, 2016.
S. Luke and L. Panait. Lexicographic parsimony pressure. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO’02, page 829–836, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.
N. H. Luong, H. La Poutré, and P. A. Bosman. Multi-objective gene-pool optimal mixing evolutionary algorithms. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pages 357–364, 2014.
P. Monsieurs and E. Flerackers. Reducing bloat in genetic programming. In B. Reusch, editor, Computational Intelligence. Theory and Applications, pages 471–478, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.
Q. U. Nguyen, X. H. Nguyen, and M. O’Neill. Semantic aware crossover for genetic programming: The case for real-valued function regression. In L. Vanneschi, S. Gustafson, A. Moraglio, I. De Falco, and M. Ebner, editors, Genetic Programming, pages 292–302, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
Q. U. Nguyen, M. O’Neill, N. Hoai, R. McKay, and E. López. Semantic similarity based crossover in gp: The case for real-valued function regression. pages 170–181, 01 2009.
U.-M. O’Reilly. Genetic programming II: Automatic discovery of reusable programs. Artificial Life, 1(4):439–441, 1994.
R. B. L. Richard P. Feynman and M. Sands. The Feynman Lectures on Physics, Vol. I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat. 2015.
J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J. Goldberg, P. Chakraborty, N. L. Ray, D. Himmelstein, W. Fu, and J. H. Moore. PMLB v1.0: an open source dataset collection for benchmarking machine learning methods. arXiv preprint arXiv:2012.00058v2, 2021.
J. Rosca and D. Ballard. Genetic programming with adaptive representations. 03 1995.
V. Sathia, V. Ganesh, and S. R. T. Nanditale. Accelerating genetic programming using gpus. arXiv preprint arXiv:2110.11226, 2021.
M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81–85, 2009.
M. D. Schmidt and H. Lipson. Age-fitness pareto optimization. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pages 543–544, 2010.
M. D. Schmidt and H. Lipson. Automated modeling of stochastic reactions with large measurement time-gaps. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pages 307–314, 2011.
G. F. Smits and M. Kotanchek. Pareto-front exploitation in symbolic regression. Genetic Programming Theory and Practice II, pages 283–299, 2005.
L. Spector. Assessment of problem modality by differential performance of lexicase selection in genetic programming: a preliminary report. In Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, pages 401–408, 2012.
T. Stephens. Genetic programming in python, with a scikit-learn inspired API: gplearn, 2016.
S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Westview Press, 2000.
K. Tanemura, Y. Tachibana, Y. Tokuni, H. Manabe, and R. Miyadera. Application of generic programming to unsolved mathematical problems. In 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE), pages 845–849. IEEE, 2022.
D. Thierens. The linkage tree genetic algorithm. In Proceedings of the 11th International Conference on Parallel Problem Solving from Nature: Part I, PPSN’10, page 264–273, Berlin, Heidelberg, 2010. Springer-Verlag.
D. Thierens and P. A. Bosman. Optimal mixing evolutionary algorithms. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, page 617–624, New York, NY, USA, 2011.
D. Thierens and P. A. Bosman. Hierarchical problem solving with the linkage tree genetic algorithm. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pages 877–884, 2013.
S.-M. Udrescu and M. Tegmark. AI Feynman: A physics-inspired method for symbolic regression. Science Advances, 6(16), 2020.
L. Vanneschi, M. Castelli, and S. Silva. Measuring bloat, overfitting and functional complexity in genetic programming. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO ’10, page 877–884, New York, NY, USA, 2010.
M. Virgolin, T. Alderliesten, C. Witteveen, and P. Bosman. Improving model-based genetic programming for symbolic regression of small expressions. Evolutionary Computation, 29:1–27, 06 2020.
D. Whitley, V. S. Gordon, and K. Mathias. Lamarckian evolution, the baldwin effect and function optimization. In Parallel Problem Solving from Nature—PPSN III: International Conference on Evolutionary Computation The Third Conference on Parallel Problem Solving from Nature Jerusalem, Israel, October 9–14, 1994 Proceedings 3, pages 5–15. Springer, 1994.
H. Zhang, A. Zhou, H. Qian, and H. Zhang. Ps-tree: A piecewise symbolic regression tree. Swarm and Evolutionary Computation, 71:101061, 2022.
Z. Zhao, R. Anand, and M. Wang. Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform. In 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pages 442–452. IEEE, 2019.
J. Zhong, L. Feng, W. Cai, and Y. Ong. Multifactorial genetic programming for symbolic regression problems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP:1–14, 07 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88784-
dc.description.abstract基因編程演算法是一種利用群體中程式個體重組、突變、選擇操作,進行演化以達到生成完成目標的程式的演算法。本論文提出了一種針對符號回歸問題的基因編程演算法,以利用程式語法資訊和語義資訊讓演化更有效率。提出的演算法由兩個機制組成,綁定機制與值域機制。綁定機制是針對語法資訊所設計,藉由保護族群中常見的兩層結構函式來避免在重組操作中重要的結構被破壞。值域機制是針對語義資訊所設計,藉由當前程式的輸出範圍與目標的輸出範圍之大小差異,來選擇重組中的子樹對象,用以保留父代的優異性。此兩種機制在實驗中顯示在實際應用資料集中具有優於其他當代方法的最佳化能力。此外,此演算法在綁定機制中存在一個待保護的常見函式的個數,是一個需調整的參數,因此本論文使用了適應機制來自動調整此參數。最後,前期實驗顯示此演算法在高維度中相較其他當代方法會有較不穩定的表現,為此本論文提出了基於最小冗餘最大相關特徵選擇演算法進行降維,得到更穩定的表現。zh_TW
dc.description.abstractGenetic programming is an evolutionary algorithm that utilizes recombination, mutation, and selection operations in a population to evolve programs. This thesis presents a genetic programming algorithm specifically designed for symbolic regression problems, aiming to utilize both syntax and semantic information for more efficient evolution. The algorithm consists of two mechanisms: the binding mechanism and the ranging mechanism. The binding mechanism protects frequently occurring two-layer function structures during recombination to preserve their importance. The ranging mechanism adjusts the selection of subtrees for recombination based on the difference between the output range of the current program and the target output range, aiming to retain the superiority of the parent programs. Empirical results demonstrate that ranging-binding genetic programming outperforms other contemporary methods in terms of the mean absolute error on Penn machine learning benchmarks. However, two issues are identified: the need to adjust the number of protected functions as a parameter and the algorithm's instability in high-dimensional problems. To automatically adjust the number of protected functions in the binding mechanism, an adaptive mechanism is proposed to automatically adjust this parameter. Furthermore, to stabilize the performance in high-dimensional problems, a feature selection based on minimum redundancy maximum relevance is proposed for dimensionality reduction, resulting in more stable performance.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:46:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:46:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Simple Genetic Programming and Its SOTA Variants 5
2.1 Simple Genetic Programming Framework 5
2.1.1 Automatically Defined Function 8
2.2 Gplearn 8
2.3 GP-GOMEA 9
2.3.1 The Representation in GP-GOMEA 9
2.3.2 Linkage Learning and Random Tree 10
2.3.3 Gene-pool Optimal Mixing 11
2.4 EllynGP 11
2.4.1 Epigenetic Information 12
2.4.2 Epigenetic Hill Climbing 13
2.5 AFP 14
2.6 ELPEX 15
Chapter 3 Ranging-Binding Genetic Programming 17
3.1 Framework 18
3.2 Binding Mechanism 21
3.2.1 Binding 22
3.2.2 Binding Adapation 24
3.3 Ranging Mechanism 26
3.4 Feature Selection 30
Chapter 4 Test Problems 35
4.1 Problems with Ground-truth Mathematical Expression 36
4.1.1 Shear Flow Problems 36
4.1.2 Predator-prey Problems 37
4.1.3 Lotka-Volterra Model of Competition 37
4.1.4 Glider Problems 38
4.1.5 Bar Magnets Problems 38
4.1.6 Bacterial Respiration Problems 39
4.2 Problems with Real-world Data Points 39
Chapter 5 Experiments and Discussions 43
5.1 Preliminary Experiment Results 43
5.1.1 Binding 44
5.1.2 Ranging 49
5.2 Experiment Results on Benchmarks 52
5.2.1 RBGP 52
5.2.2 RBGP with Binding Adaptation 55
5.2.3 RBGP with Binding Adaptation and Feature Selection 58
5.3 RBGP with Other Mechanisms 61
5.3.1 Constant 61
5.3.2 Operon Local Search 62
Chapter 6 Conclusion 67
References 69
Appendix A Introduction to MRMR and Operon 77
A.1 Maximum Relevance and Minimum Redundancy Feature Selection 77
A.2 Operon 78
-
dc.language.isoen-
dc.subject基因編程演算法zh_TW
dc.subject符號回歸zh_TW
dc.subjectSymbolic regressionen
dc.subjectGenetic programmingen
dc.title針對符號回歸之值域與綁定基因編程演算法zh_TW
dc.titleRanging-Binding Genetic Programming for Symbolic Regressionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee雷欽隆;陳穎平zh_TW
dc.contributor.oralexamcommitteeChin-Laung Lei;Ying-Ping Chenen
dc.subject.keyword基因編程演算法,符號回歸,zh_TW
dc.subject.keywordGenetic programming,Symbolic regression,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202303063-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf1.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved