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摘要

基因編程演算法是一種利用群體中程式個體重組、突變、選擇操作，進行演

化以達到生成完成目標的程式的演算法。本論文提出了一種針對符號回歸問題的

基因編程演算法，以利用程式語法資訊和語義資訊讓演化更有效率。提出的演算

法由兩個機制組成，綁定機制與值域機制。綁定機制是針對語法資訊所設計，藉

由保護族群中常見的兩層結構函式來避免在重組操作中重要的結構被破壞。值域

機制是針對語義資訊所設計，藉由當前程式的輸出範圍與目標的輸出範圍之大小

差異，來選擇重組中的子樹對象，用以保留父代的優異性。此兩種機制在實驗中

顯示在實際應用資料集中具有優於其他當代方法的最佳化能力。此外，此演算法

在綁定機制中存在一個待保護的常見函式的個數，是一個需調整的參數，因此本

論文使用了適應機制來自動調整此參數。最後，前期實驗顯示此演算法在高維度

中相較其他當代方法會有較不穩定的表現，為此本論文提出了基於最小冗餘最大

相關特徵選擇演算法進行降維，得到更穩定的表現。

關鍵字：基因編程演算法、符號回歸
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Abstract

Genetic programming is an evolutionary algorithm that utilizes recombination, mu-

tation, and selection operations in a population to evolve programs. This thesis presents a

genetic programming algorithm specifically designed for symbolic regression problems,

aiming to utilize both syntax and semantic information for more efficient evolution. The

algorithm consists of two mechanisms: the binding mechanism and the ranging mecha-

nism. The binding mechanism protects frequently occurring two-layer function structures

during recombination to preserve their importance. The ranging mechanism adjusts the

selection of subtrees for recombination based on the difference between the output range

of the current program and the target output range, aiming to retain the superiority of the

parent programs. Empirical results demonstrate that ranging-binding genetic program-

ming outperforms other contemporary methods in terms of the mean absolute error on

Penn machine learning benchmarks. However, two issues are identified: the need to ad-

just the number of protected functions as a parameter and the algorithm’s instability in
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high-dimensional problems. To automatically adjust the number of protected functions

in the binding mechanism, an adaptive mechanism is proposed to automatically adjust

this parameter. Furthermore, to stabilize the performance in high-dimensional problems,

a feature selection based on minimum redundancy maximum relevance is proposed for

dimensionality reduction, resulting in more stable performance.

Keywords: Genetic programming, Symbolic regression
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Chapter 1 Introduction

Symbolic regression is a subfield of machine learning that aims to learn a mathemat-

ical expression as a model by utilizing input data and target values. Symbolic regression

is useful in domains that require mathematical expressions to describe processes, such

as physics [31], biology [33], and engineering [15, 34]. In the field of symbolic regres-

sion, most researchers consider this problem to be NP-hard [20, 42] and genetic program-

ming (GP) is seemed as a popular approach to solve symbolic regression [16, 17, 36, 44].

Symbolic regression differs from numerical regression in that it seeks to identify

the best combination of basic operators, such as +, −, ×, ÷, exp, sin, and terminal vari-

ables to fit the target, rather than searching for optimal parameters within a fixed equation.

Symbolic regression requires few prior restrictions and expertise compared to numerical

regression, where the choice of the equation is crucial and often relies on domain-specific

knowledge. Furthermore, symbolic regression differs from black-box machine learning.

Symbolic regression provides a mathematical expression that can be analyzed and inter-

preted.

GP is an evolutionary computation algorithm introduced by Koza [13]. GP shares

similarities with genetic algorithms (GAs) as they both follow a population-based black-

box optimization framework. However, GP focuses on evolving program encodings rather

1
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than decision variables. GP is designed to enable computers to generate programs auto-

matically. Since its introduction, GP has found wide application in the domain of symbolic

regression [7, 14, 48].

Starting from the 1990s, genetic algorithms have undergone a transformation towards

the development of model-building genetic algorithms (MBGAs). Two branches in the

field of MBGAs are dependency structure matrix genetic algorithm II [6, 11] and linkage

tree genepool optimal mixing evolutionary algorithm (LT-GOMEA) [3, 39, 40], represent-

ing the state-of-the-art (SOTA) approaches. The primary objective of these algorithms is

to unveil concealed patterns among potential chromosomes through the application of ma-

chine learning techniques. Through leveraging these acquired patterns, MBGAs can pro-

duce offspring with potentially enhanced quality during the recombination process. We

believe that genetic programming can also gain advantages from adopting a comparable

approach.

The objective of this thesis is to design a genetic programming approach tailored

for symbolic regression, known as the ranging-binding genetic programming algorithm

(RBGP). RBGP incorporates the principles of model building and symbolic regression

genetic programming (SRGP) to tackle the challenge of offspring not preserving the supe-

rior traits of their parents throughout the SRGP evolution process. To preserve the parents’

superiority as much as possible, RBGP makes use of syntax and semantics information of

the program. In previous GP research, semantic represents the output of a program, and

based on semantics, variants of crossover operations are proposed. [24, 25].

For semantics, this thesis introduces the ranging mechanism, which utilizes informa-

tion from the numerical range of the output. As the output of symbolic regression reflects

2
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the semantics of a program, the numerical range can be precisely defined. The ranging

mechanism promotes offspring to adjust their output range to match the target value range

during recombination. For instance, if the output range of a tree to be recombined is

broader than the target range, recombination that narrows its output range is encouraged.

Otherwise, recombination that maintains the wider output range is discouraged.

For syntax, this thesis introduces the binding mechanism, which is similar to the

concept of automatically defined functions (ADF) [26]. The binding mechanism identi-

fies frequently occurring structures in the population and ensures that they remain together

during the recombination process. This statistical approach is similar to estimation of dis-

tribution genetic programming (EDA-GP) [10]. However, unlike ADF and EDA-GP, the

binding operators are not added to the function set, thus not affecting the generation prob-

ability of new trees in GP. Empirical evidence suggests that ADF utilization is generally

low because a commonly used function is effective only in specific contexts [29]. For ex-

ample, when evolving y = x10 using the operators +, −, ×, ÷ , it is clear that combining

multiple multiplications is necessary. However, if three consecutive multiplications are

defined as an ADF, it greatly increases the probability of generating y = x3, y = x6, or

y = x9, which may not be suitable for the problem.

In this thesis, binding adaptation is proposed to automatically adjust the binding rate.

The binding rate is a parameter that determines a threshold in the binding mechanism.

Only the function structures that appear more frequently than this threshold in the pop-

ulation are considered significant and protected by binding. However, using different

binding rates have a significant impact on performance, and different binding rates are

also needed in the early and later stages of evolution. In order to address these challenges,

we introduce binding adaptation, which automatically adjusts the binding rate. Further-

3
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more, preliminary experiments indicate that the algorithm demonstrates lower stability in

high-dimensional problems compared to other contemporary methods. To address this

issue, this thesis proposes a feature selection algorithm based on minimum redundancy

maximum relevance (MRMR) [47] for dimensionality reduction.

The proposed algorithm demonstrates a more robust optimization capability on 37

problems out of the Penn machine learning benchmarks (PMLB) [28] on average than

GP-GOMEA [44], ellynGP [16], ellynGP with epsilon-lexicase selection (EPLEX) [19],

and ellynGP with age-fitness Pareto (AFP) [32], and gplearn [36].

4
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Chapter 2 Simple Genetic

Programming and Its

SOTA Variants

This chapter provides readers with background information on the simple genetic

programming (SGP) framework, and state-of-the-art (SOTA) GP algorithms, including

GP-GOMEA, ellynGP, EPLEX, AFP, and gplearn. These SOTAs are based on the SGP

framework and are used as comparisons in this thesis.

2.1 Simple Genetic Programming Framework

SGP [13] utilizes computer programs as representations for problem-solving. The

programs are composed of functions and terminals, and their size and shape are not prede-

fined. SGP explores the space of possible program compositions to find solutions. SGP’s

symbolic expressions are similar to parse trees in compilers, providing a convenient ap-

proach to create and manipulate these compositions.

The SGP paradigm involves evolving computer programs to solve problems using

a three-step process. Firstly, an initial population of random compositions of functions

5
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and terminals, representing computer programs, is generated. Secondly, the process iter-

atively proceeds until a termination criterion is met. Each program in the population is

executed, and its fitness value is assigned based on its effectiveness in solving the problem.

A new population of computer programs is then created using three operations, with the

selection probability based on fitness. The first operation is reproduction, where existing

programs are copied into the new population. The second operation is crossover, where

parts of two randomly selected programs are combined to create two new programs. The

third operation is subtree mutation, which involves randomly selecting a subtree within

an individual’s program and replacing it with a newly generated subtree. Finally, the best

computer program in the population at the termination point is designated as the result,

potentially providing a solution or an approximate solution to the problem. Figure 2.1

presents the flowchart of the SGP framework. Algorithm 1 presents an implementation

way of the SGP framework.

Algorithm 1: Framework of SGP
Input: P : population;
Output: best program;

1 Randomly initialize population P ;
2 while ¬ ShouldTerminate do
3 for i← 1 to |P | do
4 if Choose to use crossover then
5 Pdonor ← RandomSelection(P );
6 Pi ← Crossover(Pdonor, Pi);
7 end
8 if Choose to use subtree mutation then
9 Pi ← SubtreeMutation(Pi);
10 end
11 if Choose to use reproduction then
12 Pi ← Reproduction(Pi);
13 end
14 end
15 end
16 return Best program in P ;

The basic genetic operations in SGP are fitness proportionate. Reproduction involves

6
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Figure 2.1: The flowchart of SGP framework.

copying individuals into the next generation based on their fitness, allowing the fittest indi-

viduals to survive and reproduce. Crossover is a sexual operation that exchanges sub-trees

between two parent programs, producing offspring that are syntactically and semantically

valid. Subtree mutation is a genetic operator in evolutionary algorithms that introduces

variation in the population by randomly selecting a subtree within an individual’s program

and replacing it with a newly generated subtree. This operation helps explore new areas of

the search space and can lead to the discovery of improved solutions. Overall, SGP offers

a powerful framework for evolving computer programs and finding solutions to complex

problems.

7
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2.1.1 Automatically Defined Function

ADF [26], introduced by Koza in 1994, is inspired by the practice of invoking sub-

routines in human programming. It aims to evolve useful sub-functions in the SGP evo-

lutionary process. Previous research has shown that incorporating ADF often leads to

improved performance.

2.2 Gplearn

Gplearn [36] is an implementation of GP designed for the Python platform. It utilizes

the training framework of scikit-learn and operates within the framework of SGP. One of

the challenges in GP is the phenomenon known as bloat, where programs tend to grow

larger without any significant improvement in fitness. This can lead to increased com-

putation costs [23, 43]. To address the issue of bloat, gplearn incorporates several mech-

anisms. One such mechanism is the use of a parsimony coefficient [21] with adaptive

control. The parsimony coefficient penalizes larger programs, encouraging the evolution

of smaller and more efficient solutions. Additionally, gplearn employs the hoist muta-

tion [12] operator, which restructures the program by moving subtrees to higher levels

of the tree, reducing redundancy and improving efficiency. Due to its effective handling

of bloat and its compatibility with scikit-learn, gplearn has become a popular choice for

comparisons and as a framework in various GP applications [19, 30, 38]. Researchers and

practitioners in the field of GP often rely on gplearn to benchmark their algorithms and

methodologies.

8
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2.3 GP-GOMEA

Gene-pool optimal mixing evolutionary algorithm (GOMEA) has been applied in

various domains and has achieved success in experiments, such as discrete optimiaz-

tion [40], multi-objective optimization [22], and real-valued optimization [4].

GP-GOMEA [44] is a variant of GOMEA, which is a model-based evolutionary

algorithm that utilizes linkage model. It is specifically designed for solving symbolic

regression problems, with the objective of finding precise and concise solutions. Fur-

thermore, GP-GOMEA proposed the interleaved multistart scheme (IMS) to enhance its

performance in solving symbolic regression. The IMS involves executing multiple evo-

lutionary runs with progressively increasing evolutionary budgets, all in an interleaved

manner.

2.3.1 The Representation in GP-GOMEA

GP-GOMEA uses a special type of tree structure, different from traditional GP trees.

This modified tree structure has a fixed template that allows for linkage learning and varia-

tion based on linkages, similar to other fixed-length versions of GOMEA. In GP-GOMEA,

solutions are represented as perfect r-ary trees with a specific height h, where each non-

leaf node has exactly r children. In this framework, it is possible for terminals to appear

in non-leaf nodes or for function nodes to have arity less than r. In such cases, the chil-

dren of the terminal or the portion exceeding the function node’s arity will not be executed

and will not affect the output. These nodes are referred to as introns. An example of the

representation in GP-GOMEA and the concept of introns can be seen in Figure 2.2.

9
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+
log

Figure 2.2: Example of the representation in GP-GOMEA. Example with arity 2 and
height 3. The gray portion represents the introns.

2.3.2 Linkage Learning and Random Tree

GOMEAs utilize the family of subsets (FOS) as their linkage model. An FOS is a set

of sets, denoted as F = {F1, ..., F|F |}, where each Fi is a subset of indices representing

specific locations within the genotype. In GP, a specific location in the genotype corre-

sponds to a node in the program tree. In the case of GP-GOMEA, where the shape of the

trees is constrained, the nodes represented by an FOS in the population correspond to the

same positions. The linkage learning in GOMEA involves learning an FOS, which cap-

tures hidden patterns among genotypes. An FOS can take on various forms, and among

them, the linkage tree (LT) is recommended in previous research [41].

LT is constructed by following steps. Firstly, the probability distribution over sym-

bols at each location is estimated by computing the statistical occurrence of each symbol

in each program. Then calculates the entropy and mutual information based on these

probabilities. Secondly, the LT is constructed in a hierarchical manner by treating each

genotype location as a cluster and defining the similarity between clusters based onmutual

information. Clusters with higher similarity are merged together, and this merging process

is repeated until no further merging is possible. The resulting structure is a final LT. In

GP-GOMEA, the random tree is employed as FOS. Random tree is a similar framework

to LT, it randomly combines two clusters during the merging process.

10



doi:10.6342/NTU202303063

+
log

1

2

4 5 6 7

3

/

exp

1

2

4 5 6 7

3

+

Figure 2.3: Example of GOM in GP-GOMEA. Example of GOM in GP-GOMEA.
Programi and the donor exchange nodes located at positions within Fj .

2.3.3 Gene-pool Optimal Mixing

After constructing an FOS, GOMEA performs GOM on each program Pi within the

population to generate the next generation. GOM iterates through each Fj in an FOS and

randomly selects another program as a donor. It then exchanges the corresponding Fj

between Pi and the donor. If the fitness of the exchanged result is superior to that of Pi,

the result replaces Pi. This process is repeated until all subsets in an FOS have been tra-

versed. Once the gene-pool optimal mixing (GOM) is performed on each program within

the population, the population in the next generation is obtained. Figure 2.3 illustrates an

example of the exchange between programi and the donor at positions within Fj during

the GOM process. Algorithm 2 describes the GP-GOMEA framework.

2.4 EllynGP

The basic framework of ellynGP [16] combines epigenetic information with SGP.

Epigenetic information is used to determine the expression or non-expression of each

genotype in the phenotype. In GP, this means using epigenetic information to determine

which function nodes should be executed. Additionally, ellynGP draws inspiration from

the local search methods in genetic algorithms [45] and introduces epigenetic hill climb-

11
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Algorithm 2: GP-GOMEA
Input: P : population;
Output: best program;

1 Randomly initialize population P ;
2 while ¬ ShouldTerminate do
3 FOS← LearnRandomTree(P );
4 for i← 1 to |P | do
5 Bi← Pi;
6 Oi← Pi;
7 for Fj ∈ FOS do
8 Pdonor ← RandomSelection(P );
9 Oi← OverrideNodes(Oi, Pdonor, Fj);
10 if Oi.fitness is better than Bi.fitness then
11 Bi← Oi;
12 else
13 Oi← Bi;
14 end
15 end
16 Pi← Bi;
17 end
18 end
19 return best program in P ;

ing to update the epigenetic information. Additionally, ellynGP incorporates two different

variants by combining different selection techniques. These variants are introduced in the

following sections. Figure 2.5 illustrates the relationship between ellynGP and its vari-

ants.

2.4.1 Epigenetic Information

In ellynGP, a program is represented in the genotype using postfix notation. For

example, [ x, y, − ] represents the expression x − y. This representation may result in

invalid expressions. In such cases, ellynGP considers the valid portion within the postfix

notation. For example, [ x, y, −, +, / ] and [ z, w, x, y, − ] both represent x + y

by considering the valid portion. The former is due to the lack of additional terminal

symbols for the operations + and / to perform the computation. The latter is because all

12
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Figure 2.4: Example of epigenome in ellynGP. The epigenome influences the genotype
and phenotype correspondence.

the function symbols have already been evaluated, and there is no room to include z and

w.

ellynGP stores epigenetic information in the form of a bitstring called the epigenome.

Each program has an epigenome, and when a position in the epigenome is 1, the symbol at

that position is expressed in the phenotype expression. Conversely, when a position in the

epigenome is 0, the symbol at that position is not expressed in the phenotype expression.

Figure 2.4 provides an example of an epigenome.

2.4.2 Epigenetic Hill Climbing

In each generation of evolution, ellynGP incorporates epigenetic hill climbing into

the basic SGP process to update the epigenome. Epigenetic hill climbing is conceptually

inspired by the local search in genetic algorithms. It searches for a bitstring that is close

in terms of Hamming distance to the current bitstring and determines if the new string

improves the performance. In ellynGP, it attempts to search for an epigenome with a

Hamming distance of 1 from the current one and updates the epigenome if it results in

better performance. EllynGP introduces epigenetic hill climbing for the search process.

13
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Since searching for all epigenomes with a Hamming distance of 1 is computationally ex-

pensive, epigenetic hill climbing iteratively flips each bit of the epigenome. If there is an

improvement, the epigenome is updated. The number of iterations for this process in each

generation is a parameter and can be repeated multiple times. Algorithm 3 describes the

ellynGP framework.

Algorithm 3: EllynGP
Input: P : population; h: number of epigenetic hill climbing iteration;
Output: best program;

1 Randomly initialize population P ;
2 while ¬ ShouldTerminate do
3 P ← SGPEvolution(P );
4 for i← 1 to |P | do
5 Bi← Pi;
6 for n ∈ {1,2, ... ,h} do
7 for ℓ← 1 to length(Pi.epigenome) do
8 Pi.epigenome[ℓ]← Flip(Pi.epigenome[ℓ]);
9 Pi.fitness← GetFitness(Pi, Pi.epigenome);
10 if Pi.fitness is better than Bi.fitness then
11 Bi← Pi;
12 else
13 Pi← Bi;
14 end
15 end
16 end
17 Pi← Bi;
18 end
19 end
20 return best program in P ;

2.5 AFP

AFP [32] is a selection method used in symbolic regression. EllynGP incorporates

AFP into its own framework, resulting in a variant. AFP transforms the original single-

objective pursuit of maximizing fitness into a multi-objective approach that aims to max-

imize fitness while minimizing age. In AFP, age is defined as the time that a program

14
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Figure 2.5: EllynGP and its variants.

existed in the population, measured in generations. The objective of minimizing age helps

prevent premature convergence.

2.6 ELPEX

ELPEX [19] is a variant of ellynGP that combines the ε-lexicase selection technique.

Lexicase [9, 35] selection selects programs for the next generation based on the fitness

of each individual test case, rather than using a global fitness metric. For example, in

symbolic regression problems, instead of using the overall average error as the fitness,

lexicase selection considers the error for each sampled data point as a separate fitness

criterion. The selection process is repeated multiple times in each generation until the

desired number of programs are selected.

The selection method of lexicase selection involves removing individuals from the

candidate pool that perform worse than the best-performing individual in the population

on each test case. However, this approach may be too stringent for continuous metrics

in symbolic regression, resulting in poor performance [19]. ε-lexicase selection builds

upon lexicase selection by introducing an ε tolerance for error during the selection process.
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This approach helps overcome the challenge of using continuous error metrics in symbolic

regression, where strict selection criteria may result in overly stringent filtering.
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Chapter 3 Ranging-Binding Genetic

Programming

This chapter provides a comprehensive introduction to our proposed RBGP for sym-

bolic regression. The objective of RBGP is to effectively utilize the syntax and semantics

of program tree structures in symbolic regression. RBGP consists of two components:

ranging and binding. Ranging is designed to leverage semantic information by utilizing

the difference between the output range of a program and the target range. This infor-

mation is used to guide the selection of crossover targets, aiming to make the offspring’s

range closer to the target range. By doing so, it helps to avoid extreme range changes

after crossover, ensuring the retention of the superiority of the parent programs. Bind-

ing is designed to utilize syntax information by preserving frequently occurring two-layer

function node structures from being disrupted by crossover. This concept is similar to

ADF [26], but with a difference. Instead of adding the two-layer structures to the function

set, binding aims to protect them while avoiding an increase in the population of two-layer

structures that can lead to significant output variations.

After incorporating the ranging and bindingmechanisms, RBGP has shown improved

optimization capabilities compared to state-of-the-art algorithms, as evidenced by its higher

average performance on test datasets. However, we have identified two issues and made

17
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attempts to address them. Firstly, in the binding mechanism, the decision of how many

frequently occurring functions to protect is a parameter that affects the algorithm’s perfor-

mance. Furthermore, This parameter may need to be adjusted during the evolutionary pro-

cess. Secondly, RBGP exhibits less stability as the dimensionality of the problem inputs

increases, in comparison to other state-of-the-art algorithms. To address the issue of the

binding parameter, we propose the binding adaptation mechanism, which adjusts the num-

ber of protected function structures in each generation. Users only need to determine the

initial value, and we found in experiments that the initial value does not significantly im-

pact the performance and, on average, converges to the same value. For high-dimensional

problems, we propose a feature selection technique based on MRMR [47]. Before start-

ing the optimization process for each problem, a search process is performed to find the

optimal number of dimensions that achieve dimensionality reduction. This helps stabilize

the performance of the algorithm. The following sections provide a detailed explanation

of the RBGP framework and its mechanisms.

3.1 Framework

The framework of RBGP is illustrated in Figure 3.1. The method consists of the

following steps:

1. Determine the suitable dimensionality for the problem using MRMR with binary

search.

2. Initialize the population of programs.

3. Divide the population into three equal parts for binding adaptation, each with a

different number of protected two-layer functions.
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4. Calculate the frequency of occurrence for two-layer functions within the population.

5. Select the cut point, which determines the position for crossover, while reducing the

probability of selecting protected two-layer functions.

6. Divide the program trees into two parts based on the cut point. Calculate the ratio

based on the range and use this ratio to select and exchange subtrees for crossover.

7. Calculate the average fitness for each of the three parts of the population and adjust

the number of protected two-layer functions to match the value used by the part with

the best performance.

8. Repeat from step 3 until the termination criteria are met.

Algorithm 4: Framework of RBGP
Input: P : population; X: input points; y: target points;
bt: number of protected binding function; r runs for feature selection;
Output: best program;

1 X ← FeatureSelection(X ,y,r);
2 Randomly initialize population P ;
3 while ¬ ShouldTerminate do
4 Randomly divide the population into three equal groups;
5 CutPoints← Binding(P , bt) ;
6 for i = 1 to |P | do
7 if Apply ranging then
8 Oi← Ranging(Pi, P , CutPoints, X , y) ;
9 else
10 Oi← SubtreeMutation(Pi);
11 end
12 end
13 P ← (λ+ µ)-Selection(P , O);
14 bt← BindingAdaptation(P , bt);
15 end
16 return best program in P ;

Algorithm 4 presents the pseudo-code of the proposed algorithm, outlining the step-

by-step procedure. The algorithm incorporates the protected and ranging operators, which

are discussed in detail in the following subsection. In this thesis, the population is denoted
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Figure 3.1: The framework of RBGP algorithm. The colorized parts represent the main
components proposed in this thesis.

by P , and Pi represents the i-th program in the parental population. The number of pro-

tected binding functions in each generation is denoted by bt. The offspring of the next

generation is represented by O, with Oi referring to the i-th program in the offspring pop-

ulation.

The ”while loop” in the algorithm signifies the iteration over generations. In each it-

eration, either ranging crossover or subtree mutation is randomly applied to each program.

After generating all offspring, the next population is selected using the (λ+ µ)-selection.

Additionally, the number of functions requiring protection in binding is updated through

20



doi:10.6342/NTU202303063

statistical analysis of the fitness within the three groups of the population.

3.2 Binding Mechanism

Binding adaptation aims to automatically adjust bt in each generation. The population

is randomly divided into three equal groups at the beginning of each generation. The

binding mechanism uses bt − 1, bt, and bt + 1 in these three groups. In this thesis, these

three groups of the population are referred to as the minus group, the base group, and the

plus group, respectively. After dividing the population and determining the respective bt

values for each program, the cut point for each program in the population is determined

through binding. These cut points are used for ranging crossover.

During the evolutionary process, certain subtrees are observed to occur more fre-

quently, and in some ADF-based approaches [1, 29], these subtrees are treated as modules

that need to be protected. In the RBGP algorithm, the binding operator identifies pairs of

parent-child nodes as two-layer functions and treats them as modules. The target structure

protected by binding is a two-layer function composed of two function nodes. This choice

is made to ensure a sufficiently significant statistical quantity. Otherwise, if the quan-

tity is not significant enough, it may lead to erroneous signals and protect inappropriate

structures.

When selecting cut points for crossover, the binding mechanism aims to preserve the

two-layer functions with higher frequency by reducing the probability of selecting them

as cut points between parent and child programs. The detailed mechanisms of these two

components are explained in the following subsections.
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3.2.1 Binding

The binding mechanism is explained in Algorithm 5. It begins by counting the oc-

currence of two-layer functions in the population. Then, based on the grouping, bt − 1,

bt, and bt + 1 functions are selected for consideration. Next, the probability of selecting

edges between frequently occurring two-layer functions is reduced as cut points, aiming to

increase the likelihood of preserving common two-layer functions in the next generation.

The protection probability for each two-layer function is calculated based on its frequency

of occurrence relative to the total frequency of occurrence of all two-layer functions. Fig-

ure 3.2(a) presents an example of the binding mechanism.

Algorithm 5: Binding
Input: P : population; bt: number of protected binding function in this

generation;
Output: CutPoints: positions of one point crossover for each program;

1 F← Get the number of observed 2-layer functions;
2 for i = 1 to |P | do
3 if Pi in minus group then
4 F← Get the top bt-1 most frequently in F;
5 end
6 if Pi in base group then
7 F← Get the top bt most frequently in F;
8 end
9 if Pi in plus group then
10 F← Get the top bt+1 most frequently in F;
11 end
12 Prob← The probability of avoiding disrupting the structure in F;
13 end
14 for i = 1 to |P | do
15 CutPoinsi← DecidingCutPoint(P, Prob) ;
16 end
17 return CutPoints;

Algorithm 6 demonstrates how to determine the cut points for each program based

on the frequency of occurrence of two-layer functions. After statistically determining the

frequency of occurrence of two-layer functions, the algorithm proceeds to select a cut
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Algorithm 6: DecidingCutPoint
Input: Pi: i-th program; Prob: The probability of avoiding disrupting the

common structure;
Output: CutPointi: position of one point crossover for Pi;

1 F← Get the number of observed 2-layer functions;
2 do
3 edge← Randomly select an edge in Pi;
4 IsReject← True;
5 coin← Conduct a Bernoulli trial with a success probability of Probedge;
6 if coin is successful then
7 IsReject← True;
8 else
9 IsReject← False;
10 end
11 while Not try enough times AND IsReject is True;
12 return edge ;

point for each program. Firstly, a parent node-child node edge is randomly selected as a

cut point, and a Bernoulli trial is conducted with the protection probability as the success

probability. If the trial is successful, a new edge is randomly selected, and the process

is repeated. This process continues until the Bernoulli trial fails or the process has been

repeated a sufficient number of times. In our implementation, a while loop is used, and

repeated 10 times is considered sufficient. Figure 3.2(b) presents an example of how to

decide the cut point in a program.
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Figure 3.2: An example of the binding mechanism.

3.2.2 Binding Adapation

Algorithm 7 presents the binding adaptation mechanism in detail. In each generation,

the population is divided into three groups: the minus group, the base group, and the plus

group. The number of protected functions considered in each group is adjusted as follows:

bt − 1 in the minus group, bt in the base group, and bt + 1 in the plus group.
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At the end of the generation, the fitness of each group is evaluated based on a perfor-

mance metric such as mean absolute error (MAE). If the average fitness of the plus group

is better than that of the base group, indicating a lower MAE, then the value of bt+1 in

the next generation is set to bt + 1. Conversely, if the average fitness of the minus group

is better, then bt+1 is set to bt − 1. If neither group outperforms the base group, bt+1 re-

mains unchanged as bt. This rule ensures that the value of bt adapts with each generation t,

allowing for dynamic adjustments to optimize the protection mechanism for the selected

functions.

An example of binding adaptation is illustrated in Figure 3.3. In this example, it is

assumed that the average fitness of the Plus group performs the best. Therefore, in the

next generation, the number of protected binding functions, denoted as bt+1, is updated to

bt + 1. The adaptation formula for updating the binding functions is as follows:

bt+1 =


bt + 1 , if fitness of the plus group is better.

bt − 1 , if fitness of the minus group is better.

bt , if fitness of the base group is better.

(3.1)
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Figure 3.3: An example of the binding adaptation.

3.3 Ranging Mechanism

After the binding process, each program determines a cut point, which divides the

program into two parts. One part is the subtree used for exchange, which is also an exe-
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Algorithm 7: BindingAdaptation
Input: P : population. bt: number of considered binding function in this

generation;
Output: bt+1: number of considered binding function for next generation;

1 if The average fitness of the minus group is better than the others. AND b > 0
then

2 bt+1← bt - 1 ;
3 end
4 if The average fitness of the plus group is better than the others. AND b < max
number of combination then

5 bt+1← bt + 1 ;
6 end
7 return bt+1 ;

cutable program. This part is referred to as the ”subtree portion” in this thesis. The other

part is the portion that accepts the subtree from another program during crossover and is

referred to as the ”retained portion” in this thesis.

The output of a program is considered as semantics in symbolic regression genetic

programming [24, 25]. The rangingmechanism aims to improve the efficiency of crossover

using semantics. The definition of the range is provided as follows:

range(X ) = |max(X )−min(X )|, (3.2)

where X is a vector representing the data point or output of the program. The ranging

mechanism then calculates two ratios based on the range: the diff ratio and the swap

ratio. The diff ratio is the ratio between the range of the target value and the range of the

program’s output. The swap ratio is the ratio between the range of the terminals in the

subtree to be exchanged and the range of the output in the subtree portion.

After calculating the two ratios, we determine which program to perform crossover

with based onwhether the diff ratio is greater than 1. When the diff ratio is greater than 1, it

indicates that the range of the target value is larger than the range of the current program’s
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output. In this case, we search for a subtree portion in another program that has a swap

ratio larger than our own swap ratio, aiming to bring the diff ratio closer to 1. Conversely,

when the diff ratio is less than 1, we look for a program with a swap ratio smaller than our

own swap ratio to perform crossover.

In the implementation, to satisfy the need for extreme ranging and convergence in

search for problem-specific structures, the ranging crossover considers the extreme cases

of the diff ratio, which determines how far it deviates from 1. For example, if the diff

ratio is 2, indicating that the range of the target value is twice that of the program’s output

value, it becomes crucial to bring the diff ratio closer to 1. On the other hand, if the diff

ratio is 1.1, there is a higher probability of selecting a crossover that deviates from 1 in

terms of the diff ratio. An example of a ranging crossover is illustrated in Figure 8.
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Figure 3.4: An example of the ranging crossover.

The ranging crossover is presented in Algorithm 8. Pi,subtree and Pi,retained are two

segments ofPi that are divided by Cutpointsi. Xt represents the variables used inPi,subtree.

ratioi,swap and ratioi,diff correspond to the swap ratio and diff ratio, respectively. Pi(X)

denotes the execution result of the i-th program with input X . The range is defined in

the same way as Equation 3.2. The extremity of the ratio is quantified by applying the

ratio itself to a sigmoid function and adding a bias term, then taking the absolute value
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Algorithm 8: Ranging crossover
Input: P : population; Pi: Program for performing ranging;
CutPoints: positions of one point crossover for each program;
X: input points; y: output points;
Output: Oi: offspring;

1 Pi,subtree, Pi,retained← Get subtree by CutPointsi;
2 Xt← Select a random dimension used in Pi,subtree;
3 ratioi,subtree← Range( Pi,subtree(X) ) / Range( Xt ) ;
4 ratioi,diff ← Range( y ) / Range( Pi(X) ) ;
5 Donor← { program Pj used Xt } ;
6 Prob← Calculate a probability based on the degree of ratio deviation from 1;
7 coin← Conduct a Bernoulli trial with a success probability of Prob;
8 if coin is successful then
9 ratioi,diff ← 1

ratioi,diff
;

10 end
11 if ratioi,diff > 1 then

// Choose an appropriate ratio
12 Donor← donors ∪ { Pj | ratioj,swap > ratioi,swap } ;
13 else
14 Donor← donors ∪ { Pj | ratioj,swap < ratioi,swap } ;
15 end
16 if donors ̸= ∅ then
17 Pdonor,subtree← Randomly choose from Donor ;
18 else
19 Pdonor,subtree← Randomly initialize a program with proper ratiodonor,swap;
20 end
21 Oi← OnePointCrossover(Pdonor,subtree, Pi,retained) ;
22 return Oi ;

to obtain the probability, Prob. This approach aims to make the ratio closer to 1, that is

less extremity, allowing for a wider search space. Finally, based on the ratio, a suitable

crossover target is selected. If there are no suitable targets in the population, a suitable

swap ratio tree is randomly initialized for crossover.

3.4 Feature Selection

In the experiments, we observed that using only the ranging mechanism and binding

mechanism led to less stable performance as the dimensionality increased. To address this
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issue, we propose a feature selection mechanism in order to overcome this problem.

We propose a feature selection mechanism using the MRMR [47] algorithm for di-

mensionality reduction. MRMR is introduced in A.1. The algorithm runs GP t times, and

the average fitness is calculated as an indicator to evaluate the performance in specific di-

mensions. Once the indicator is determined, the goal of the algorithm is to search for the

best-performing dimension. In our implementation, we adopt a coarse-to-fine search strat-

egy. When the algorithm starts, a coarse interval is determined, and the search direction

(higher dimension, lower dimension, or finer search) is decided based on the performance

at the starting position minus the interval, the starting position, and the starting position

plus the interval. If the performance at the starting position minus the interval is the best,

the search will proceed to lower dimensions. If the performance at the starting position

plus the interval is the best, the search will proceed to higher dimensions. If the perfor-

mance at the starting position is the best, a finer search will be conducted by narrowing

down the interval and exploring the neighboring points around the starting position. This

process is repeated until the interval can no longer be further refined or until a boundary

is reached. An example of our proposed feature selection search method is presented in

Figure 3.5.

Algorithm 9 describes how our feature selectionmechanismworks. Xf represents the

input X with a dimension of f obtained through MRMR feature selection. UpperBound

and LowerBound represent the upper and lower bounds of the search, respectively, and

they change as the search becomes more refined. nlow, nmid, and nhigh represent the cur-

rent search dimension minus the interval, the current search dimension, and the current

search dimension plus the interval, respectively. flow, fmid, and fhigh represent the aver-

age fitness obtained by running GP t times using inputs with dimensions nlow, nmid, and
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Figure 3.5: An example of proposed feature selection. The blue arrows mean the search
target in the next iteration.

nhigh, respectively.
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Algorithm 9: FeatureSelection
Input: X input points; y target points; t: number of test iterations;
Output: Xn: input points after feature selection;

1 UpperBound← The number of features in X;
2 LowerBound← 1;
3 Interval←

⌊
UpperBound

10

⌋
;

4 nlow ← Interval ;
5 nmid← Interval × 2 ;
6 nhigh← Interval × 3;
7 while Interval != 0 AND nmid != UpperBound AND nmid != LowerBound do
8 Xnlow

←MRMRFeatureSelection(X ,y,nlow);
9 Xnmid

←MRMRFeatureSelection(X ,y,nmid);
10 Xnhigh

←MRMRFeatureSelection(X ,y,nhigh);
11 flow ← The average fitness of RunGP(Xnlow

, y) in t runs;
12 fmid← The average fitness of RunGP(Xnmid

, y) in t runs;
13 fhigh← The average fitness of RunGP(Xnhigh

, y) in t runs;
14 if flow is the best in flow,fmid,fhigh then
15 nhigh← nmid ;
16 nmid← nlow ;
17 nlow ← max(nlow-Interval, LowerBound) ;
18 end
19 if fhigh is the best in flow,fmid,fhigh then
20 nlow ← nmid ;
21 nmid← nhigh ;
22 nhigh← min(nhigh+Interval, UpperBound) ;
23 end
24 if fmid is the best in flow,fmid,fhigh then
25 UpperBound← nhigh ;
26 LowerBound← nlow ;
27 Interval←

⌊
UpperBound−LowerBound

10

⌋
;

28 nlow ← nmid - Interval ;
29 nhigh← nmid + Interval ;
30 end
31 end
32 Xnmid

←MRMRFeatureSelection(X ,y,nmid);
33 return Xnmid

;
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Chapter 4 Test Problems

This chapter aims to introduce the Penn machine learning benchmarks (PMLB) [17,

28] and eight real-world problems from the university of California, Irvine (UCI) dataset [2],

which are widely used datasets for evaluating GP algorithms [8, 18, 46] and utilized as test

problems in this thesis. PMLB is a collection of datasets specifically designed to evaluate

supervised machine learning algorithms for classification and symbolic regression tasks.

The dataset repository consists of two types of problems: problems with a ground-truth

mathematical expression and problems only with real-world application data points.

The problems with a ground-truth mathematical expression are sourced from two

repositories. One is Feynman symbolic regression dataset [27], which focuses on math-

ematical expressions that accurately represent static physical systems. The other one is

ODE-Strogatz repository [37] includes non-linear and chaotic dynamical problems, such

as models for bacterial respiration and glider patterns.

On the other hand, the problems only with real-world data points cover a wide range

of domains like healthcare, business, and technology. In these problems, the goal is to

predict or classify outcomes based on input features without having access to the underly-

ing mathematical expressions or structures. These problems simulate real-world scenarios

and allow for a comprehensive evaluation of machine learning algorithms in practical ap-
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plications. In the following sections, the main problems tested in this thesis are introduced

in detail.

4.1 Problems with Ground-truth Mathematical

Expression

In this section, we present the problems used in this thesis, which have known math-

ematical expressions serving as ground truth. These problems include population models

and bacterial respiration models in the field of biology, as well as fluid models and mag-

netic models in the field of physics.

4.1.1 Shear Flow Problems

Shearflow1 and Shearflow2 are two problems that represent scenarios of rotational

dynamics and phase portraits on a sphere. The rotational dynamics of an object in a shear

flow are governed as follows:

yShearflow1 = cot(x1)× cos(x2), (4.1)

yShearflow2 = (cos2(x1) + 0.1× sin2(x1))× sin(x2), (4.2)

where yShearflow1 and yShearflow2 are target value for Shearflow1 and Shearflow2 respec-

tively. x1 and x2 are common inputs for both of these problems. x1 represents ”longitude,”

which is the angle around the z-axis. x2 represents ”latitude,” which is the angle measured

northward from the equator.
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4.1.2 Predator-prey Problems

Predprey1 and Predprey2 are two problems that represent scenarios of the population

dynamics between predators and prey in an ecological environment. The system is defined

by the following equations:

yPredprey1 = x1 × (4− x1 −
x2

1 + x1

), (4.3)

yPredprey2 = x2 × ((
x1

1 + x1

)− 0.075× x2), (4.4)

where yPredprey1 and yPredprey2 are target value for Predprey1 and Predprey2 respectively.

x1 and x2 are common inputs for both of these problems. x1 represents the population of

the prey, while x2 represents the population of the predator.

4.1.3 Lotka-Volterra Model of Competition

Lv1 and Lv2 are two problems that represent scenarios of the population dynamics

between two species where they share the same food source and the availability of food

is limited. This situation leads to a competitive relationship, for example, between rabbits

and sheep. The system is defined by the following equations:

yLv1 = 3× x1 − 2× x1 × x2 − x2
1, (4.5)

yLv2 = 2× x2 − x1 × x2 − x2
2, (4.6)

where yLv1 and yLv2 are target value for Lv1 and Lv2 respectively. x1 and x2 are common

inputs for both of these problems and represent the population of two species.
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4.1.4 Glider Problems

Glider1 and Glider2 are two problems that represent scenarios of glider flying. The

system is defined by the following equations:

yGlider1 = −0.05× x2
1 − sin(x2), (4.7)

yGlider2 = x1 −
cos(x2)

x1

, (4.8)

where yGlider1 and yGlider2 are target value for Glider1 and Glider2 respectively. x1 and

x2 are common inputs for both of these problems. x1 is speed and x2 is the angle to the

horizontal.

4.1.5 Bar Magnets Problems

Barmag1 and Barmag2 are two problems that represent scenarios of a rough physical

interpretation. Suppose that two bar magnets are confined to a plane, but are free to rotate

about a common pin joint, as shown in Figure 4.1. The system is defined by the following

equations:

yBarmag1 = −0.5× sin(x1 − x2)− sin(x1), (4.9)

yBarmag2 = 10− (x1 × x2)

(1 + 0.5× x2
1)
, (4.10)

where yBarmag1 and yBarmag2 are target value for Barmag1 and Barmag2 respectively. x1

and x2 represent the angular orientations of the north poles of the magnets.
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Figure 4.1: Bar magnets problem.

4.1.6 Bacterial Respiration Problems

Bacres1 and Bacres2 are two problems that represent models for respiration in a bac-

terial culture. The system is defined by the following equations:

yBacres1 = 20− x1 −
(x1 × y)

(1 + 0.5× x2
1)
, (4.11)

yBacres2 = 10− (x1 × x2)

(1 + 0.5× x2
1)

(4.12)

where yBacres1 and yBacres2 are target value for Bacres1 and Bacres2 respectively. x1

represent levels of nutrient and x1 represent levels of oxygen.

4.2 Problems with Real-world Data Points

This type of test data constitutes the majority of PMLB. The dimensionality of the

input data, also known as features, ranges from 2 to 100. In order to avoid the curse of

dimensionality, this thesis conducts experiments using test data with dimensions below

10 and validates the effectiveness of dimensionality reduction methods using data of di-
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Table 4.1: UCI test problems with their dimension.

Test Problems Dimension
Airfoil 5

EnergyCooling 8
Concrete_compress 8
EnergyHeating 8

Tower 25
WineRed 11
WineWhite 11

Yacht 6

mension 50. By focusing on lower-dimensional test data, we can gain insights into the

performance and scalability of the proposed algorithms without being overwhelmed by

high-dimensional complexity.

Table 4.2 presents the PMLB benchmark problems used in this paper, along with the

corresponding abbreviations and their dimensions. We categorize the dimensions as 2, 5,

and 10 for further analysis. Furthermore, to test the feature selection mechanism, we also

tested 9 problems with a dimensionality of 50, which are denoted as higher dimension

problems.

The UCI dataset includes real-world problems from various domains, such as the

chemical composition of wines and engine cooling, representing practical application sce-

narios. Table 4.1 presents the problems and their corresponding dimensions used in the

experiments.
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Table 4.2: PMLB test problems with their dimension and abbreviation.

Abbreviation Test Problems Dimension
Dimension = 2

f1 Shearflow-1 2
f2 Shearflow-2 2
f3 Predprey-1 2
f4 Predprey-2 2
f5 Lv-1 2
f6 Lv-2 2
f7 Glider-1 2
f8 Glider-2 2
f9 Barmag-1 2
f10 Barmag-2 2
f11 Bacres-1 2
f12 Bacres-2 2

Dimension = 5
f13 Visualizing-galaxy 4
f14 Sleuth-ex-1605 5
f15 Fri-c0-100-5 5
f16 Fri-c0-500-5 5
f17 Fri-c1-100-5 5
f18 Fri-c1-500-5 5
f19 Fri-c3-100-5 5
f20 Fri-c3-250-5 5
f21 Fri-c3-500-5 5
f22 Fri-c3-1000-5 5

Dimension = 10
f23 Rmftsa-ladata 10
f24 Fri-c0-500-10 10
f25 Fri-c1-250-10 10
f26 Fri-c2-250-10 10
f27 Fri-c3-500-10 10
f28 Chatfield-4 12

Dimension = 50
f29 Fri-c2-500-50 50
f30 Fri-c4-500-50 50
f31 Fri-c3-1000-50 50
f32 Fri-c2-1000-50 50
f33 Fri-c1-500-50 50
f34 Fri-c0-250-50 50
f35 Fri-c4-1000-50 50
f36 Fri-c0-1000-50 50
f37 Fri-c1-1000-50 50
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Chapter 5 Experiments and

Discussions

In this chapter, the first part presents the preliminary experiments on the binding and

ranging mechanisms, thereby explaining the motivation behind our approach. The second

part presents the initial version of RBGP tested on real-world datasets from the PMLB,

demonstrating its superior optimization capabilities compared to other SOTAs. However,

it also identifies issues such as the need to adjust the parameter bt and the instability of

performance with increasing dimensions. To address these challenges, we propose the

binding adaptation mechanism and the feature selection mechanism. When incorporated

into RBGP, the results show improved optimization capabilities compared to the initial

version. The third part presents RBGP’s potential to incorporate other mechanisms, such

as the constant mechanism and the operon local search mechanism.

5.1 Preliminary Experiment Results

In this section, we present the preliminary experimental results of ranging and binding

mechanisms on toy problems and discuss the motivation behind the development of these

two mechanisms. Section 5.1.1 presents the preliminary empirical results of the binding
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mechanism. Inspired by the ADF mechanism, our goal is to protect useful structures.

However, experiments showed that incorporating some useful structures into the function

set may actually lead to poorer performance. Therefore, we proposed the binding mech-

anism that avoids disrupting useful structures through crossover, without adding them to

the function set. We validated this approach through experiments and demonstrated its

improvement over SGP on the test problems. Section 5.1.2 presents the preliminary em-

pirical results of the ranging mechanism. When considering why adding certain function

structures to the function set may lead to poorer performance, we assumed that different

function structures have different scaling factors from input to output. It is possible that

when certain observed useful structures are used consecutively, the scaling factor becomes

extremely amplified, causing the output to fall away significantly from the target value and

resulting in poorer performance. This inspired us to use the scaling factor as a signal to aid

evolution, which led to the development of the ranging mechanism. In the experiments,

the ranging mechanism showed improved performance compared to gplearn, which is one

of a SOTA, on the test problems. Furthermore, an analysis of the evolved program results

confirmed that the ranging mechanism produced more suitable structures.

5.1.1 Binding

When conducting ADF-related research on x3 + x2 + x, we initially believed that

the structure of multiplying x by itself, i.e., x2, would be useful. Therefore, we simulated

the evolution of ADF and incorporated x2 into the function set. However, as shown in

Figure 5.1, the inclusion of x2 resulted in poorer performance.

Upon further examination of the results, we discovered that the structure of xy + z

appeared frequently in the optimal solutions. This is because the test problem’s polynomial
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can be more efficiently expanded using Horner’s method, where the xy + z structure

enhances the efficiency of evolution. As depicted in Figure 5.1, incorporating the x∗y+z

structure yielded significant improvements for SGP.

This inspired us to develop the binding mechanism, as incorporating commonly used

function structures into the function set could potentially result in poorer performance

due to overuse. Instead, our approach is to protect these common function structures

from being disrupted by crossovers. By employing a selection mechanism that preserves

efficient structures, we achieve a more stable and reliable method. Figure 5.2 illustrates

the results of SGP + Binding and SGP on the toy problem. It can be observed that SGP +

binding consistently shows improvements across different mutation rates.

In addition, to confirm the beneficial effect of binding on evolution, we analyzed the

relationship between fitness and binding numbers. The results are shown in Figure 5.3.

The x-axis represents populations divided into five bins based on their fitness performance,

and the average binding numbers are calculated for each bin. It can be observed that pro-

grams with better performance have, on average, a higher number of bindings. The cor-

relation coefficient indicates a positive correlation between fitness and binding numbers.

Regenerate response

The experiment settings are described in Table 5.1. Note that for fitness, we adopt

MAE as the evaluation metric, where a lower value indicates better performance. For the

div* function, in order to ensure a well-defined operation, we refer to the definition in

Equation 5.1, which is also commonly used by other state-of-the-art algorithms.
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Table 5.1: The experiment settings for the binding preliminary experiments.

Parameter Value
Generation 10
Population 200
Fitness MAE (lower is better)
Function set add, sub, mul, div*
Terminal set x
Test problems x3 + x2 + x
Sample points 100 sample points uniformly distributed from -5 to +5
Experiment runs 100

div∗(x, y) =


x
y
, if |y| ≥ 0.001

1, otherwise

(5.1)

Figure 5.1 illustrates the results of the preliminary experiments on binding, demon-

strating that incorporating seemingly appropriate structures into the function set may ac-

tually lead to worse results. The graph shows the average fitness of the best-performing

program out of 100 runs.
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Figure 5.1: The graph shows the average fitness of the best-performing program out of 100
runs. Lower fitness means better performance. SGP + UDF (x ∗ x) performs even worse
in this case compared to SGP, but incorporating a suitable UDF (x ∗ x + x) significantly
improves the performance.

Figure 5.2: The graph shows the average fitness of the best-performing program out of
100 runs. Lower fitness means better performance. SGP + binding shows lower average
MAE compare to SGP and SGP + ADF
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Figure 5.3: The relationship between average fitness and the number of bindings. The re-
sults show a correlation coefficient greater than 0.7, indicating a strong correlation. Each
bar represents the average binding number of programs, calculated at every 20% based on
their fitness performance. The x-axis represents increasing percentages of fitness perfor-
mance, with a higher value indicating better performance.
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5.1.2 Ranging

In the preliminary experiments of the binding mechanism, we observed that incor-

porating useful structures into the function set could lead to poorer results. We attributed

this phenomenon to the scaling effect of the structures on input values. If a structure ap-

pears continuously, the scaling factor can become extremely large, which poses a risk

when adding it to the function set. For example, the structure x2 may combine to form

x4 or x6, rapidly increasing the amplification factor. This hypothesis not only explains

why common structures should be protected rather than easily added to the function set

but also suggests that the scaling factor of structures can serve as a signal for evolution.

By avoiding structures that undergo extreme amplification or extreme reduction, we can

leverage the concept as ranging mechanism to guide the evolutionary process.

To validate the effectiveness of the ranging mechanism, we compared it with gplearn

on a test problem. The functions used in the experiment were all unary functions, as they

directly reflect the signal of ranging. The results, as shown in Table 5.3, indicate that

ranging mechanism + SGP (RGP) outperforms gplearn. Additionally, we examined the

evolved structures of RGP and gplearn, as illustrated in Figure 5.4. Overall, RGP tends to

evolve structures that are closer to the actual function.

The experiment settings are described in Table 5.2. Note that for the log* function

and inv* function, in order to ensure a well-defined operation, we refer to the commonly-

used definition in Equation 5.2 and Equation 5.3 respectively.

Table 5.3 presents the comparison results between RGP and gplearn. The values

reported are the maximum, median, minimum, and mean values of the best-performing

program in the population across 100 experimental runs. These values are rounded to two
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Table 5.2: The experiment settings for the ranging preliminary experiments.

Parameter Value
Generation 10
Population 200
Fitness MAE (lower is better)
Function set addOne, subOne, log*, exp, inv*, neg
Terminal set x
Test problems sigmoid function
Sample points 100 sample points uniformly distributed from -5 to +5
Experiment runs 100

decimal places, and measured in terms of their MAE.

Figure 5.4 illustrates the evolutionary structures of RGP and gplearn methods. It

shows the comparison between the solutions of the best, median, and worst fitness struc-

tures obtained from 100 experiments, and the target function sigmoid. The x-values repre-

sent the sample points defined in the experimental setup. It can be observed that, overall,

RGP evolves structures that are closer to the target function.

log∗(x) =


log(x), if x > 0.001

0, otherwise

(5.2)

inv∗(x) =



1
x
, if |x| ≥ 0.001

0, otherwise

(5.3)
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Table 5.3: The results of ranging preliminary experiments compared with gplearn. These
values are rounded to two decimal places, and measured in terms of their MAE.

RGP gplearn
Min 0 0
Median 0 0.10
Max 0.18 0.34
Mean 0.03 ± 0.04 0.11 ± 0.08

Figure 5.4: The evolutionary structures of RGP and gplearn. In 100 experimental runs,
both methods yielded a set of 100 best programs. This figure shows the best-performing
program, the median program, and the worst-performing program in both methods. RGP
and gplearn show the same results in the best case. However, RGP achieves closer fit
results in the median and maximum cases.
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5.2 Experiment Results on Benchmarks

In this section, we present the results of the first version of RBGP in comparison

to gplearn, ellynGP, and GP-GOMEA, which are SOTAs, on the test problems in 5.2.1.

RBGP in this version incorporates only the ranging mechanism and binding mechanism.

From the experiments, we identified two areas for improvement. Firstly, the number of

protected function structures, denoted as bt before, is a parameter that needs to be de-

termined. To address this, we propose the binding adaptation mechanism and compare

it with gplearn, ellynGP, EPLEX, AFP, and GP-GOMEA in 5.2.2. Additionally, exper-

imental results show that the initial value settings for binding adaptation have minimal

impact on the overall performance. Second, as the dimensionality increases, RBGP tends

to exhibit instability. To address this, we introduce the feature selection mechanism and

demonstrate its improvement when combined with binding adaptation RBGP in 5.2.3.

5.2.1 RBGP

This subsection presents the comparison results between RBGP and gplearn, el-

lynGP, GP-GOMEA, as well as the relationship between the stability of RBGP’s perfor-

mance and the dimensionality. In the following experimental results, the initial version

of the algorithm, RBGP, is denoted as RBGP-α. The experiment settings are described

in Table 5.4. Note that for the sqrt* function, in order to ensure a well-defined operation,

we refer to the definition in Equation 5.4, which is also commonly used by other SOTA

algorithms.

Table 5.5 presents the comparison results between RBGP and gplearn, ellynGP, and
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Table 5.4: The experiment settings for RBGP experiments.

Parameter Value
Generation 20
Population 200
Fitness MAE (lower is better)
Function set add, sub, mul, div*, log*, exp, sqrt*, square
Terminal set x
Test problems f1 ∼ f37
Experiment runs 100

GP-GOMEA. The values in the table represent the fitness, which is measured by MAE.

A lower MAE indicates better performance of the algorithm. The bold values in the table

indicate the best performance among the four algorithms for each respective problem.

Figure 5.5 displays the ranking analysis of the four methods, categorized by the di-

mensionality of the test problems (low, medium, high, refer to Table 4.2). It can be ob-

served that RBGP exhibits more unstable performance as the dimensionality increases

compared to the other methods.

sqrt∗(x) = sqrt(|x|). (5.4)
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Table 5.5: The comparison of first version RBGP and gplearn, ellynGP, and GP-
GOMEA.The values in the table represent the average MAE, and the bold values indicate
the lowest MAE. The comparison is made to the third decimal place to determine the win-
ner is denoted with *.

Test
Problem

GP-
GOMEA ellynGP gplearn RBGP-α

f1 3.57E+03 6.38E-01 1.44E-01 1.18E-01
f2 8.42E+02 1.36E+00 1.88E-01 1.75E-01
f3 4.08E+03 7.12E-01 5.79E-01 5.61E-01
f4 6.74E+04 1.58E+01 6.84E-01 6.11E-01
f5 5.87E+09 4.72E-01 1.75E-01 1.56E-01
f6 3.96E+05 6.34E-01 2.93E-01 2.54E-01
f7 6.75E+02 3.58E-01 3.56E-01 3.12E-01
f8 3.04E+06 7.01E-01 6.73E-01 6.56E-01
f9 1.66E+03 3.32E+281 1.30E-01 1.08E-01
f10 4.93E+04 2.57E-01 1.14E-01 9.36E-02
f11 4.57E+00 1.35E+00 6.97E-01 5.87E-01
f12 8.73E+00 7.08E+01 8.69E-01 7.00E-01
f13 3.10E+05 2.25E+03 4.37E+02 4.05E+02
f14 3.22E+10 8.76E+00 8.08E+00 7.99E+00
f15 3.24E+01 7.62E-01 6.64E-01 6.40E-01
f16 3.44E+02 7.16E-01 6.44E-01 6.78E-01
f17 1.33E+04 7.97E-01 7.10E-01 6.91E-01
f18 6.60E+01 7.77E-01 6.92E-01 6.91E-01
f19 1.31E+01 7.39E-01 6.18E-01 6.76E-01
f20 3.74E+01 7.86E-01 6.89E-01 6.76E-01
f21 3.63E+03 7.94E-01 6.93E-01 6.69E-01
f22 1.58E+03 7.69E-01 6.38E-01 6.48E-01
f23 1.94E+01 3.52E+88 1.73E+00 1.72E+00
f24 7.11E+01 8.01E-01 7.34E-01 6.57E-01
f25 4.65E+20 1.27E+01 1.17E+01 1.20E+01
f26 2.92E+03 7.49E-01 7.13E-01 7.23E-01
f27 1.45E+01 8.30E-01 7.52E-01 7.12E-01
f28 5.81E+02 7.80E-01 7.23E-01 6.99E-01
f29 9.69E+01 1.19E+00 7.89E-01 7.68E-01
f30 3.65E+04 8.24E-01 7.70E-01 7.34E-01
f31 2.11E+02 1.04E+00 7.64E-01 7.29E-01
f32 1.35E+02 6.63E+47 7.99E-01 7.61E-01
f33 6.07E+02 7.81E+00 7.66E-01 7.68E-01
f34 4.26E+02 7.45E-01 7.83E-01 7.66E-01
f35 1.25E+04 1.06E+00 7.71E-01 7.50E-01
f36 6.06E+02 7.36E-01 7.82E-01 7.92E-01
f37 3.36E+02 1.43E+00 7.47E-01 7.70E-01
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Figure 5.5: The ranking analysis of the four methods. The value is average ranking ±
standard deviation of each method. On average, RBGP outperforms other methods in
terms of ranking across different dimensional problems. However, there is a trend of
increased instability as the dimensionality increases.

5.2.2 RBGP with Binding Adaptation

This subsection presents the results of RBGP with binding adaptation mechanism

compared to gplearn, ellynGP, EPLEX, AFP, and GP-GOMEA. It also shows the conver-

gence of the average bt value in binding adaptation. The experiment settings are the same

as Table 5.4.

Table 5.6 presents the comparison results between RBGPwith binding adaptation and

the other 5 SOTAs. In Table 5.6, ”Lowest MAE” represents the number of results where a

method achieved the lowest MAE in the corresponding dimension and parameter settings.

”Statistical test” shows the results of the statistical tests performed. We used the Kruskal-

Wallis test to compare RBGP and GP-GOMEA, as GP-GOMEA failed the Homogeneity

of Variance test. The other methods were compared using the Student t-test. The symbols
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Table 5.6: RBGPwith binding adaptation (RBGP-β) comparedwith othermethods. In this
table, ”LowestMAE” represents the number of results where amethod achieved the lowest
MAE. ”Statistical test” shows the results of the statistical tests performed. The symbols
”+” represent the number of times RBGP-β significantly outperformed other methods,
”≈” represents the number of times RBGP-β showed no significant difference compared
to other methods, and ”−” represents the number of times other methods significantly
outperformed RBGP-β.

type RBGP-β GP-GOMEA gplearn ellynGP ELPEX AFP

Dimension = 2

Lowest MAE 12 0 0 0 0 0
Statistical test (+/≈/−) - 10/2/0 8/4/0 9/3/0 7/5/0 5/7/0

Dimension = 5

Lowest MAE 8 0 0 0 2 0
Statistical test (+/≈/−) - 7/3/0 7/3/0 9/1/0 8/1/1 7/2/1

Dimension = 10

Lowest MAE 5 0 0 0 1 0
Statistical test (+/≈/−) - 4/2/0 4/1/1 5/1/0 3/2/1 3/2/1

Dimension = 50

Lowest MAE 5 0 2 0 1 1
Statistical test (+/≈/−) - 9/0/0 7/0/2 9/0/0 8/0/1 8/1/0

”+” represent the number of times RBGP-β significantly outperformed other methods,

”≈” represents the number of times RBGP-β showed no significant difference compared

to other methods, and ”−” represents the number of times other methods significantly

outperformed RBGP-β. The significance level is 0.05 for all tests. On average, RBGP

with binding adaptation demonstrates better optimization capability and maintains similar

performance as generations and population size increase. The raw fitness results are listed

in Table 5.9.

Figure 5.6 illustrates that under the binding adaptation mechanism, the initial setting

of bt tends to converge to similar values on average. Therefore, users have more flexibility

in setting the initial value of bt.
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Figure 5.6: The plot of bt variation across all test problems as generations increase. Each
line represents a different initial value setting for bt, and each point represents the average
bt across all test problems at that generation. On average, bt converges to a constant value
regardless of its initial value.
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Table 5.7: The average dimension after feature selection.

Problem f5 f10 f50
Average dimension 4.22 7.33 36.57

5.2.3 RBGP with Binding Adaptation and Feature Selection

This subsection presents the improvements brought by the feature selection mecha-

nism added to RBGP with binding adaptation. The experiment settings are the same as

Table 5.4 except for test problems are f13 ∼ f37. Figure 5.7 illustrates the statistical anal-

ysis of incorporating the feature selection mechanism into RBGP with binding adaptation.

It can be observed that as the dimensionality increases, the improvement brought by the

feature selection mechanism becomes more significant.

Figure 5.8 presents the comparison between RBGP + binding adaptation (RBGP-

β) and RBGP + binding adaptation + feature selection (RBGP) against ellynGP, gplearn,

GP-GOMEA, EPLEX, and AFP. Each point represents the ratio of the method achieving

the lowest MAE in a particular dimensional problem. The raw fitness results are listed

in Table 5.9. Additionally, Table 5.8 displays the raw fitness comparison between RBGP

and other methods on the UCI dataset.

Due to the additional number of evaluations required by the feature selection mecha-

nism compared to the other three proposed mechanisms, we compared the increased cost

of incorporating feature selection at different dimensions, measured in terms of the number

of evaluations. The results are presented in Figure 5.9. Furthermore, Table 5.7 presents

the average dimension of the problems after feature selection.
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Figure 5.7: Statistical analysis after incorporating feature selection. Using t-test with a
significance level of 0.05. Comparison between RBGP-β and RBGP. Since feature selec-
tion yielded unchanged results in the case of dimension 2, we only discuss datasets with
dimensions of 5 or higher. It can be observed that as the dimension increases, the benefits
of feature selection become more pronounced.
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Figure 5.8: Lowest MAE ratio after incorporating feature selection. In terms of MAE,
RBGP shows improvement across all dimensions.

Figure 5.9: The computation time after incorporating feature selection. The additional
time cost in terms of the number of evaluations is not significant.
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5.3 RBGP with Other Mechanisms

In this section, we present the results of combining RBGP with other mechanisms,

demonstrating RBGP’s potential as a component for other algorithms and its compatibil-

ity with machine learning. In Section 5.3.1, we compare the performance before and after

incorporating the constant mechanism. The experiment shows that the addition of con-

stants has a noticeable effect in high-dimensional problems, while its impact is limited

in low-dimensional problems. In Section 5.3.2, we compare the performance before and

after incorporating the local search method in operon. The experiment reveals that RBGP

shows greater improvement when combined with local search compared to other methods

incorporating the same mechanism.

5.3.1 Constant

The experiment settings are the same as Table 5.4 except for terminal set includes

real-valued constant sampled from (0,1). Figure 5.10 illustrates the statistical analysis of

incorporating the constant mechanism into RBGP. It can be observed that adding the con-

stant mechanism may lead to a decline in performance for lower-dimensional problems,

Table 5.8: Raw fitness of RBGP compared with other SOTAs on UCI datasets. The bold
font indicates the lowest MAE.

RBGP GP-Gomea gplearn AFP ellynGP ELPEX
Airfoil 1.36E+01 6.34E+00 1.76E+01 9.76E+01 1.03E+02 1.14E+14
EnergyCooling 1.21E+01 1.89E+01 1.14E+01 1.86E+01 1.55E+01 2.20E+01
Concrete_compress 3.93E+00 4.23E+00 3.97E+00 6.71E+00 3.38E+03 2.85E+12
EnergyHeating 4.27E+00 4.29E+00 3.77E+00 1.22E+02 4.54E+00 6.67E+00
Tower 5.52E+01 7.20E+01 5.54E+01 4.38E+04 8.83E+01 4.96E+54
WineRed 5.02E-01 6.47E-01 5.79E-01 5.79E-01 7.15E-01 6.70E-01
WineWhite 6.41E-01 9.69E-01 6.50E-01 1.15E+00 9.06E-01 6.70E-01
Yacht 2.59E+00 4.92E+00 2.68E+00 6.57E+00 5.54E+00 6.11E+00
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Figure 5.10: Statistical analysis after incorporating constant. Using t-test with a signifi-
cance level of 0.05. Incorporating constant tends to show more improvement as the di-
mensionality increases.

while for higher-dimensional problems, the addition of the constant mechanism shows

significant improvement. The raw fitness results are listed in Table 5.10.

5.3.2 Operon Local Search

Operon [5] and one-layer operon local search are introduced in appendix A.2. The

experiment settings are the same as Table 5.4. Table 5.10 presents the statistical analysis

of incorporating the one-layer operon local search mechanism into RBGP, comparing it

with other methods combined with one-layer operon local search. It can be observed that
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incorporating the one-layer operon local search yields different performances for different

GP methods. RBGP, compared to other methods, is more suitable for integrating the one-

layer operon local search. The raw fitness results are listed in Table 5.12.

Table 5.11: RBGP with one-layer operon local search compared with other methods com-
bined with one-layer operon local search. The symbols ”+” represent the number of times
RBGP significantly outperformed other methods, ”≈” represents the number of times
RBGP showed no significant difference compared to other methods, and ”−” represents
the number of times other methods significantly outperformed RBGP. The significance
level is 0.05 for all tests.

type RBGP GP-GOMEA gplearn ellynGP ELPEX AFP Operon

Lowest MAE 20 0 0 0 0 0 17

Statistical test (+/≈/−) - 37/0/0 34/2/1 34/3/0 34/2/1 33/4/0 12/13/12
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Table 5.9: Raw fitness of RBGP + binding adaptation (RBGP-β) and RBGP + binding
adaptation + feature selection (RBGP) with other SOTAs. The bold font indicates the
lowest MAE.

RBGP-β GP-GOMEA gplearn ellynGP ELPEX AFP RBGP
f1 1.14E-01 3.57E+03 1.44E-01 6.38E-01 1.16E+00 9.61E+24 -
f2 1.50E-01 8.42E+02 1.88E-01 1.36E+00 2.56E-01 2.34E-01 -
f3 5.46E-01 4.08E+03 5.79E-01 7.12E-01 5.57E-01 7.91E-01 -
f4 5.93E-01 6.74E+04 6.84E-01 1.58E+01 9.14E-01 4.21E+00 -
f5 1.36E-01 5.87E+09 1.75E-01 4.72E-01 4.90E-01 3.73E+03 -
f6 2.69E-01 3.96E+05 2.93E-01 6.34E-01 5.98E-01 3.33E+01 -
f7 2.71E-01 6.75E+02 3.56E-01 3.58E-01 3.40E-01 3.74E-01 -
f8 6.23E-01 3.04E+06 6.73E-01 7.01E-01 8.35E-01 7.69E-01 -
f9 9.07E-02 1.66E+03 1.30E-01 3.32E+281 1.51E-01 3.24E+00 -
f10 6.47E-02 4.93E+04 1.14E-01 2.57E-01 1.94E-01 1.28E-01 -
f11 6.83E-01 4.57E+00 6.97E-01 1.35E+00 1.55E+00 1.18E+17 -
f12 7.09E-01 8.73E+00 8.69E-01 7.08E+01 7.50E+25 6.12E+00 -
f13 2.65E+02 3.10E+05 4.37E+02 2.25E+03 2.54E+03 3.08E+04 2.80E+02
f14 7.95E+00 3.22E+10 8.08E+00 8.76E+00 8.40E+00 1.14E+01 7.78E+00
f15 5.71E-01 3.24E+01 6.64E-01 7.62E-01 6.78E-01 6.93E-01 5.61E-01
f16 6.60E-01 3.44E+02 6.44E-01 7.16E-01 6.33E-01 6.43E-01 6.16E-01
f17 6.38E-01 1.33E+04 7.10E-01 7.97E-01 7.36E-01 7.44E-01 6.74E-01
f18 6.34E-01 6.60E+01 6.92E-01 7.77E-01 7.27E-01 7.15E-01 6.10E-01
f19 6.22E-01 1.31E+01 6.18E-01 7.39E-01 6.04E-01 7.03E-01 6.39E-01
f20 6.23E-01 3.74E+01 6.89E-01 7.86E-01 7.29E-01 7.24E-01 6.16E-01
f21 6.22E-01 3.63E+03 6.93E-01 7.94E-01 7.06E-01 7.06E-01 6.22E-01
f22 5.68E-01 1.58E+03 6.38E-01 7.69E-01 6.83E-01 6.80E-01 5.76E-01
f23 1.68E+00 1.94E+01 1.73E+00 3.52E+88 2.13E+00 2.04E+00 1.57E+00
f24 6.26E-01 7.11E+01 7.34E-01 8.01E-01 7.44E-01 7.54E-01 5.06E-01
f25 1.27E+01 4.65E+20 1.17E+01 1.27E+01 1.16E+01 1.23E+01 1.15E+01
f26 7.05E-01 2.92E+03 7.13E-01 7.49E-01 7.13E-01 7.08E-01 6.84E-01
f27 6.60E-01 1.45E+01 7.52E-01 8.30E-01 7.82E-01 7.54E-01 6.35E-01
f28 6.67E-01 5.81E+02 7.23E-01 7.80E-01 7.38E-01 7.41E-01 6.50E-01
f29 7.40E-01 9.69E+01 7.89E-01 1.19E+00 9.32E-01 8.87E+00 5.49E-01
f30 7.32E-01 3.65E+04 7.70E-01 8.24E-01 1.11E+00 5.85E+00 7.17E-01
f31 7.26E-01 2.11E+02 7.64E-01 1.04E+00 2.60E+01 8.51E-01 6.76E-01
f32 7.72E-01 1.35E+02 7.99E-01 6.63E+47 8.49E-01 8.26E-01 5.41E-01
f33 7.93E-01 6.07E+02 7.66E-01 7.81E+00 1.49E+00 1.09E+00 6.45E-01
f34 7.42E-01 4.26E+02 7.83E-01 7.45E-01 7.40E-01 7.50E-01 6.54E-01
f35 7.37E-01 1.25E+04 7.71E-01 1.06E+00 8.14E-01 8.62E-01 6.51E-01
f36 7.69E-01 6.06E+02 7.82E-01 7.36E-01 7.64E-01 7.51E-01 6.76E-01
f37 7.66E-01 3.36E+02 7.47E-01 1.43E+00 5.71E+02 8.33E-01 6.86E-01
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Table 5.10: Raw fitness of RBGP compared with RBGP+constant. The bold font indicates
the lowest MAE.

RBGP + constant RBGP
f1 1.01E-01 1.19E-01
f2 1.60E-01 1.68E-01
f3 5.76E-01 5.76E-01
f4 6.02E-01 6.09E-01
f5 1.37E-01 1.32E-01
f6 2.44E-01 2.32E-01
f7 2.70E-01 2.86E-01
f8 6.49E-01 6.44E-01
f9 1.06E-01 9.50E-02
f10 6.07E-02 8.04E-02
f11 7.86E-01 7.98E-01
f12 8.33E-01 7.49E-01
f13 1.45E+02 4.98E+02
f14 7.77E+00 8.20E+00
f15 5.53E-01 6.36E-01
f16 6.13E-01 6.70E-01
f17 6.32E-01 6.86E-01
f18 6.26E-01 6.71E-01
f19 6.17E-01 6.82E-01
f20 6.39E-01 6.76E-01
f21 6.26E-01 6.62E-01
f22 5.74E-01 6.05E-01
f23 1.59E+00 1.70E+00
f24 5.68E-01 6.44E-01
f25 1.26E+01 1.41E+01
f26 6.73E-01 7.16E-01
f27 5.87E-01 6.96E-01
f28 6.24E-01 6.88E-01
f29 5.87E-01 7.34E-01
f30 6.46E-01 7.46E-01
f31 6.33E-01 7.54E-01
f32 6.15E-01 7.71E-01
f33 6.69E-01 7.48E-01
f34 7.15E-01 7.29E-01
f35 6.42E-01 7.64E-01
f36 7.06E-01 7.60E-01
f37 6.59E-01 7.54E-01
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Table 5.12: Raw fitness of RBGP and SOTAs combined with Operon. The bold font
indicates the lowest MAE.

RBGP GP-GOMEA gplearn ellynGP ELPEX AFP Operon
f1 1.11E-01 1.66E-01 1.42E-01 1.23E-01 1.30E-01 1.43E-01 1.20E-01
f2 1.44E-01 2.28E-01 2.14E-01 2.12E-01 1.97E-01 2.09E-01 1.62E-01
f3 4.75E-01 1.15E+00 5.35E-01 6.00E-01 5.74E-01 6.28E-01 2.20E-01
f4 6.64E-01 1.08E+00 8.64E-01 9.18E-01 9.43E-01 9.66E-01 4.13E-01
f5 1.36E-01 2.74E-01 2.29E-01 2.53E-01 2.86E-01 2.79E-01 1.23E-01
f6 1.83E-01 7.77E-01 4.93E-01 6.30E-01 7.27E-01 7.58E-01 1.66E-01
f7 2.66E-01 6.52E-01 3.46E-01 3.33E-01 3.34E-01 3.66E-01 2.84E-01
f8 6.42E-01 6.88E-01 6.80E-01 6.66E-01 6.64E-01 6.66E-01 6.60E-01
f9 9.70E-02 1.31E-01 1.46E-01 1.28E-01 1.23E-01 1.21E-01 1.01E-01
f10 3.64E-02 1.54E-01 7.49E-02 8.54E-02 9.03E-02 8.88E-02 4.13E-02
f11 1.34E-01 8.96E-01 7.71E-01 8.92E-01 7.20E-01 8.42E-01 1.93E-02
f12 2.71E-01 9.22E-01 8.27E-01 1.10E+00 1.01E+00 9.94E-01 1.55E-01
f13 3.50E+01 7.72E+01 7.68E+01 7.56E+01 7.64E+01 7.63E+01 2.43E+01
f14 7.72E+00 1.07E+01 8.06E+00 8.43E+00 8.54E+00 8.25E+00 7.51E+00
f15 5.59E-01 7.89E-01 6.47E-01 6.84E-01 6.83E-01 6.69E-01 5.27E-01
f16 6.00E-01 8.07E-01 6.16E-01 6.60E-01 6.58E-01 6.52E-01 3.77E-01
f17 6.21E-01 8.15E-01 7.08E-01 7.57E-01 7.29E-01 7.47E-01 6.80E-01
f18 6.47E-01 8.00E-01 7.03E-01 7.15E-01 7.23E-01 7.35E-01 6.78E-01
f19 5.93E-01 8.32E-01 6.11E-01 6.76E-01 6.82E-01 6.94E-01 4.13E-01
f20 6.19E-01 7.87E-01 6.93E-01 7.05E-01 6.99E-01 7.05E-01 6.89E-01
f21 6.27E-01 7.92E-01 7.11E-01 6.94E-01 7.00E-01 6.98E-01 6.61E-01
f22 5.70E-01 7.81E-01 6.33E-01 6.79E-01 6.64E-01 6.83E-01 6.13E-01
f23 1.47E+00 1.87E+00 1.75E+00 1.70E+00 1.72E+00 1.70E+00 1.26E+00
f24 5.29E-01 8.29E-01 7.63E-01 7.22E-01 7.26E-01 7.36E-01 6.35E-01
f25 1.19E+01 3.48E+01 1.19E+01 1.33E+01 1.25E+01 1.17E+01 1.12E+01
f26 6.77E-01 8.21E-01 6.84E-01 6.93E-01 7.04E-01 6.95E-01 4.33E-01
f27 6.11E-01 8.29E-01 7.43E-01 7.54E-01 7.48E-01 7.72E-01 7.14E-01
f28 6.50E-01 7.86E-01 7.09E-01 7.29E-01 7.26E-01 7.23E-01 6.67E-01
f29 6.90E-01 8.32E-01 8.06E-01 8.10E-01 8.10E-01 8.15E-01 7.22E-01
f30 7.06E-01 7.93E-01 7.70E-01 7.76E-01 7.71E-01 7.79E-01 7.20E-01
f31 7.19E-01 7.89E-01 7.72E-01 7.65E-01 7.74E-01 7.80E-01 7.09E-01
f32 7.14E-01 8.25E-01 8.20E-01 8.05E-01 8.05E-01 8.06E-01 7.25E-01
f33 7.17E-01 8.09E-01 7.90E-01 7.98E-01 7.86E-01 7.90E-01 7.46E-01
f34 7.15E-01 8.04E-01 7.26E-01 7.01E-01 6.91E-01 6.94E-01 5.56E-01
f35 7.13E-01 7.89E-01 7.71E-01 7.75E-01 7.80E-01 7.82E-01 7.24E-01
f36 7.19E-01 8.15E-01 7.28E-01 7.08E-01 7.09E-01 7.01E-01 5.62E-01
f37 7.08E-01 8.15E-01 7.85E-01 7.87E-01 7.95E-01 7.99E-01 7.35E-01
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Chapter 6 Conclusion

This paper proposes a GP algorithm for symbolic regression that utilizes program

syntax and semantic information to enhance evolutionary efficiency. For syntax infor-

mation, we introduced the binding mechanism to protect common structures from being

disrupted by crossover. For semantic information, we proposed the ranging mechanism

to utilize the scaling factor between the inputs and outputs of substructures composed of

functions, enabling the identification of suitable crossover targets. Furthermore, to au-

tomatically adjust the number of protected structures through binding, we proposed the

binding adaptation mechanism, which dynamically adjusts parameters throughout gener-

ations. Additionally, we introduced a feature selection method that combines the MRMR

approach to improve the stability of RBGP in high-dimensional problems.

Through preliminary experiments, it was observed that protecting common struc-

tures rather than directly adding them to the function set is advantageous. Additionally,

the combination of ranging and SGP demonstrated good optimization capabilities in toy

problems. On the PMLB dataset, RBGP, on average, outperformed other SOTAs in terms

of MAE performance. Furthermore, the inclusion of binding adaptation maintained its

advantage over other SOTAs, and it was observed that the initial setting of the number of

protected structures had minimal impact on the results. The inclusion of feature selection

yielded improvements on average, particularly in high-dimensional problems.
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In terms of future work, regarding semantics, it would be worth exploring if there

are better signals than ranging for symbolic regression. Generally speaking, GP requires

signals other than fitness to aid in evolution. This paper validated that incorporating addi-

tional useful signals can significantly improve GP’s optimization capabilities. Therefore,

one direction for future research is to investigate how to identify and integrate such signals.

On the syntax side, using other languages to describe programs, such as first-order lan-

guages, and protecting meaningful structures formed by these languages is also a potential

research direction.

In summary, this paper introduces the ranging mechanism and the binding mecha-

nism for symbolic regression GP. The ranging mechanism utilizes the range of program

outputs to provide evolutionary signals beyond fitness, and the binding mechanism pro-

tects common structures. The proposed algorithm demonstrates superior optimization ca-

pabilities compared to other SOTAs on real-world test problems.
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Appendix A — Introduction to MRMR

and Operon

A.1 MaximumRelevance andMinimumRedundancy Fea-

ture Selection

MRMR [47] is a feature selection technique aimed to remove redundant information,

thereby enhancing the relevance of the selected features for the trainedmodel and reducing

training costs. MRMR achieves this by maximizing the relevance between the input and

output while minimizing the redundancy among the input features during feature selection.

The relevance used in MRMR is defined as follows:

R(Xi) = I(Xi, Y ), (A.1)

where X is input, Y is output, and Xi is a given feature. I(·, ·) is the mutual information

function. The redundancy is defined as follows:

D(Xi) =
1

|S|
∑
Xs∈S

I(Xi, Xs), (A.2)
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where S is the selected feature set. As MRMR aims to maximize relevance and minimize

redundancy, the importance of a feature is determined by the following equation:

Importance(Xi) = R(Xi)−D(Xi). (A.3)

By utilizing the above definition, MRMR can effectively rank the importance of features

and serve as a basis for feature selection.

A.2 Operon

Operon [5] is a GP framework that combines machine learning with SGP. In each

generation, it utilizes local search to find the parameters of a linear model with the GP

tree as input and the target values as output. Specifically, it aims to find the values of

the two parameters, Scale and Offset, in the expression Scale ∗OutputGP+ Offset using

non-linear least squares fitting. In operon, the trees in each generation gradually become

deeper due to the inclusion of two additional function layers, ”*”, and ”+”. This prevents

the integration of fixed-length methods such as ellynGP and GP-GOMEA. To verify if

incorporating these methods into the operon local search can lead to improvements, we

propose a one-layer local search approach. In this approach, the ”Scale” and ”Offset”

obtained from the fitting process in each generation are not involved in the evolutionary

process. Algorithm 10 describes the one-layer local search framework.
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Algorithm 10: One-layer operon local search
Input: GP: Other GP algorithm. X: Input; y: Output;
Output: Best program

1 Initialize GP.
2 while ¬ ShouldTerminate do
3 GP evolve one generation.
4 for Pi ∈ Population of GP do
5 Scale, Offset← non-linearLeastSquaresFitting(Pi,X ,y);
6 Pi.updateFitness(Scale ∗Pi(X)+ Offset, y);
7 end
8 end
9 return Best program in P with its Scale and Offset ;
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