Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88783
標題: 利用關係分解和熵感知採樣改善邊直方圖採樣演算法
Improving EHBSA with Relational Decomposition and Entropy-aware Sampling
作者: 黃柏維
Bo-Wei Huang
指導教授: 于天立
Tian-Li Yu
關鍵字: 分佈估計演算法,排列問題,
estimation of distribution algorithms,permutation problems,
出版年 : 2023
學位: 碩士
摘要: 排列問題嵌入了各種語義,其中一些重視基因的相對順序,一些重視基因之間的鄰近關係,還有一些重視基因的絕對位置關係。由於這些不同的語義,排列分佈估計演算法可能會在一種語義的某些問題中找到接近最優的解,但在另一種語義中則不然。為了解決語義問題,本文對邊直方圖採樣演算法提出了三個改進。首先,本論文文引入關係矩陣和熵感知採樣來增強邊直方圖採樣演算法表示不同語義的能力。其次,本論文結合了自適應機制,在演化過程中動態調整採樣基因的數量。最後,本論文提出了一種過濾機制,在採樣過程中動態排除確定性較低的關係。實驗結果顯示,與其他六種排列分佈估計演算法相比,改進的邊直方圖採樣演算法在線性排序問題上找到了最接近最佳解的解,並且在二次分配問題上找到了與點直方圖採樣演算法相比更接近最佳解的解。此外,改進的邊直方圖採樣演算法在流程式生產排程問題上找到的解和最佳解的距離是原始的邊直方圖採樣演算法找到的解和最佳解的距離的三分之一。雖然與原始的邊直方圖採樣演算法相比,改進的邊直方圖採樣演算法需要更多的函數評估次數才能在某些旅行銷售員問題實例中找到最佳解,但其他排列分佈估計演算法卻無法找到最佳解。總體而言,與其他排列分佈估計演算法相比,改進的邊直方圖採樣演算法在旅行銷售員問題、二次分配問題、流程式生產排程問題和線性排序問題上找到了平均最接近最佳解的解。
Permutation problems embed with various semantics, some of which give importance to the relative order of genes, some to the adjacency relation between genes, and some to the absolute position of genes. Due to these different semantics, permutation estimation of distribution algorithms (EDAs) may find solutions close to the optimal in some problems of one semantic but not in another. To address the semantic issue, the thesis presents three improvements to the edge histogram-based sampling algorithm (EHBSA). Firstly, the thesis introduces relational matrices and entropy-aware sampling to augment EHBSA's capability to represent diverse semantics. Secondly, the thesis incorporates an adaptive mechanism to dynamically adjust the number of sampled genes during evolution. Lastly, the thesis proposes a filtering mechanism to dynamically eliminate relations with lower certainty during the sampling process. The experiments show that the improved EHBSA finds the solutions closest to the optimal compared to the other six permutation EDAs on the linear ordering problem (LOP) and finds solutions closer to the optimal on the quadratic assignment problem (QAP) compared to the node histogram-based sampling algorithm. Furthermore, the improved EHBSA obtains solutions three times closer to the optimal solution compared to the original EHBSA on the permutation flow shop problem (PFSP). Although the improved EHBSA requires more function evaluations to find the optimal solutions in some traveling salesman problem (TSP) instances compared to the original EHBSA, other permutation EDAs fail to find the optimal solutions. Overall, the improved EHBSA finds the solutions closest to the optimal on average across TSP, QAP, PFSP, and LOP compared to other permutation EDAs.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88783
DOI: 10.6342/NTU202303061
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2028-08-07
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
785.48 kBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved