Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88783
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于天立zh_TW
dc.contributor.advisorTian-Li Yuen
dc.contributor.author黃柏維zh_TW
dc.contributor.authorBo-Wei Huangen
dc.date.accessioned2023-08-15T17:46:09Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citationE. Arza, E. I. A. Pérez, and J. Ceberio. Kernels of Mallows models under the hamming distance for solving the quadratic assignment problem. Swarm and Evolutionary Computation, 59:100740, 2020.
M. Ayodele. Effective and efficient estimation of distribution algorithms for permutation and scheduling problems. PhD thesis, 2018.
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the vapnik-chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.
A. Brownlee, M. Pelikan, J. McCall, and A. Petrovski. An application of a multivariate estimation of distribution algorithm to cancer chemotherapy. In Proceedings of the 10th annual conference on Genetic and Evolutionary Computation, pages 463– 464, 2008.
J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano. A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems. Progress in Artificial Intelligence, 1:103–117, 2012.
J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano. Extending distance-based ranking models in estimation of distribution algorithms. In 2014 IEEE Congress on Evolutionary Computation, pages 2459–2466, 2014.
J. Ceberio, A. Mendiburu, and J. A. Lozano. Introducing the Mallows model on estimation of distribution algorithms. In Neural Information Processing: 18th International Conference, pages 461–470, 2011.
J. Ceberio, A. Mendiburu, and J. A. Lozano. The Plackett-Luce ranking model on permutation-based optimization problems. In 2013 IEEE Congress on Evolutionary Computation, pages 494–501, 2013.
J. Ceberio, A. Mendiburu, and J. A. Lozano. Kernels of Mallows models for solving permutation-based problems. In Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation, pages 505–512, 2015.
J. Ceberio, R. Santana, A. Mendiburu, and J. A. Lozano. Mixtures of generalized Mallows models for solving the quadratic assignment problem. In 2015 IEEE Congress on Evolutionary Computation, pages 2050–2057, 2015.
D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise, and the sizing of populations. Complex Systems, 6:333–362, 1991.
D. E. Goldberg, K. Sastry, and T. Latoza. On the supply of building blocks. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pages 336–342, 2001.
D. R. Hunter. MM algorithms for generalized Bradley-Terry models. The Annals of Statistics, 32(1):384–406, 2004.
S. Jiang, A. Ziver, J. Carter, C. Pain, A. Goddard, S. Franklin, and H. Phillips. Estimation of distribution algorithms for nuclear reactor fuel management optimisation. Annals of Nuclear Energy, 33(11-12):1039–1057, 2006.
R. D. Luce. Individual choice behavior: A theoretical analysis. 2012.
C. L. Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130, 1957.
J. I. Marden. Analyzing and modeling rank data. 1996.
A. Mendiburu, J. Miguel-Alonso, J. Lozano, M. Ostra, and C. Ubide. Parallel EDAs to create multivariate calibration models for quantitative chemical applications. Journal of Parallel and Distributed Computing, 66(8):1002–1013, 2006.
R. L. Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series C: Applied Statistics, 24(2):193–202, 1975.
R. Santana, P. Larrañaga, and J. Lozano. Protein folding in simplified models with estimation of distribution algorithms. IEEE transactions on Evolutionary Computation, 12(4):418–438, 2008.
S. Tsutsui. Probabilistic model-building genetic algorithms in permutation representation domain using edge histogram. In Parallel Problem Solving from Nature —PPSN VII: 7th International Conference Granada, Spain, September 7–11, 2002, pages 224–233, 2002.
S. Tsutsui. A comparative study of sampling methods in node histogram models with probabilistic model-building genetic algorithms. In 2006 IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages 3132–3137, 2006.
S. Tsutsui and G. Wilson. Solving capacitated vehicle routing problems using edge histogram based sampling algorithms. In 2004 IEEE Congress on Evolutionary Computation, pages 1150–1157, 2004.
T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan. Population sizing for entropy-based model building in discrete estimation of distribution algorithms. In Proceedings of the 9th annual conference on Genetic and Evolutionary Computation, pages 601–608, 2007.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88783-
dc.description.abstract排列問題嵌入了各種語義,其中一些重視基因的相對順序,一些重視基因之間的鄰近關係,還有一些重視基因的絕對位置關係。由於這些不同的語義,排列分佈估計演算法可能會在一種語義的某些問題中找到接近最優的解,但在另一種語義中則不然。為了解決語義問題,本文對邊直方圖採樣演算法提出了三個改進。首先,本論文文引入關係矩陣和熵感知採樣來增強邊直方圖採樣演算法表示不同語義的能力。其次,本論文結合了自適應機制,在演化過程中動態調整採樣基因的數量。最後,本論文提出了一種過濾機制,在採樣過程中動態排除確定性較低的關係。實驗結果顯示,與其他六種排列分佈估計演算法相比,改進的邊直方圖採樣演算法在線性排序問題上找到了最接近最佳解的解,並且在二次分配問題上找到了與點直方圖採樣演算法相比更接近最佳解的解。此外,改進的邊直方圖採樣演算法在流程式生產排程問題上找到的解和最佳解的距離是原始的邊直方圖採樣演算法找到的解和最佳解的距離的三分之一。雖然與原始的邊直方圖採樣演算法相比,改進的邊直方圖採樣演算法需要更多的函數評估次數才能在某些旅行銷售員問題實例中找到最佳解,但其他排列分佈估計演算法卻無法找到最佳解。總體而言,與其他排列分佈估計演算法相比,改進的邊直方圖採樣演算法在旅行銷售員問題、二次分配問題、流程式生產排程問題和線性排序問題上找到了平均最接近最佳解的解。zh_TW
dc.description.abstractPermutation problems embed with various semantics, some of which give importance to the relative order of genes, some to the adjacency relation between genes, and some to the absolute position of genes. Due to these different semantics, permutation estimation of distribution algorithms (EDAs) may find solutions close to the optimal in some problems of one semantic but not in another. To address the semantic issue, the thesis presents three improvements to the edge histogram-based sampling algorithm (EHBSA). Firstly, the thesis introduces relational matrices and entropy-aware sampling to augment EHBSA's capability to represent diverse semantics. Secondly, the thesis incorporates an adaptive mechanism to dynamically adjust the number of sampled genes during evolution. Lastly, the thesis proposes a filtering mechanism to dynamically eliminate relations with lower certainty during the sampling process. The experiments show that the improved EHBSA finds the solutions closest to the optimal compared to the other six permutation EDAs on the linear ordering problem (LOP) and finds solutions closer to the optimal on the quadratic assignment problem (QAP) compared to the node histogram-based sampling algorithm. Furthermore, the improved EHBSA obtains solutions three times closer to the optimal solution compared to the original EHBSA on the permutation flow shop problem (PFSP). Although the improved EHBSA requires more function evaluations to find the optimal solutions in some traveling salesman problem (TSP) instances compared to the original EHBSA, other permutation EDAs fail to find the optimal solutions. Overall, the improved EHBSA finds the solutions closest to the optimal on average across TSP, QAP, PFSP, and LOP compared to other permutation EDAs.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:46:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:46:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Related Works 7
2.1 Edge Histogram-based Sampling Algorithm 7
2.2 Node Histogram-based Sampling Algorithm 10
2.3 Mallows Model Estimation of Distribution Algorithm 12
2.4 Plackett-Luce Estimation of Distribution Algorithm 17
2.5 Random Keys Estimation of Distribution Algorithm 20
Chapter 3 Methodology 21
3.1 Binary Relation 21
3.1.1 Motivation 21
3.1.2 Method 22
3.2 Relational Matrices 24
3.2.1 Motivation 24
3.2.2 Method 24
3.3 Entropy-aware Sampling 30
3.3.1 Motivation 30
3.3.2 Method 30
3.4 Number of Genes to Sample 33
3.4.1 Motivation 33
3.4.2 Method 34
3.5 Filtering Mechanism 35
3.5.1 Motivation 35
3.5.2 Method 36
Chapter 4 Experiments 37
4.1 Experiment Setup 37
4.2 Test Problems 38
4.2.1 Traveling Salesman Problem 38
4.2.2 Quadratic Assignment Problem 39
4.2.3 Permutation Flow-Shop Scheduling Problem 40
4.2.4 Linear Ordering Problem 43
4.3 Experiments on Proposed Methods 44
4.3.1 Relational Matrices and Entropy-aware Sampling 44
4.3.2 Number of Genes to Sample 45
4.3.3 Filtering Mechanism 46
4.4 Overall Results 48
Chapter 5 Conclusion 55
References 57
-
dc.language.isoen-
dc.subject分佈估計演算法zh_TW
dc.subject排列問題zh_TW
dc.subjectestimation of distribution algorithmsen
dc.subjectpermutation problemsen
dc.title利用關係分解和熵感知採樣改善邊直方圖採樣演算法zh_TW
dc.titleImproving EHBSA with Relational Decomposition and Entropy-aware Samplingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee雷欽隆;陳穎平zh_TW
dc.contributor.oralexamcommitteeChin-Laung Lei;Ying-Ping Chenen
dc.subject.keyword分佈估計演算法,排列問題,zh_TW
dc.subject.keywordestimation of distribution algorithms,permutation problems,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202303061-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2028-08-07-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
785.48 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved