Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88770| Title: | (0, q)-形式的柏格曼核與譜核之半經典漸進 Semi-Classical Asymptotics of Bergman and Spectral Kernels for (0,q)-forms |
| Authors: | 蔣岳霖 Yueh-Lin Chiang |
| Advisor: | 蕭欽玉 Chin-Yu Hsiao |
| Keyword: | 柏格曼核,複幾何,半經典分析,複分析,譜核,譜間隙, Bergman Kernel,Complex Geometry,Semi-Classical Analysis,Complex Analysis,Spectral Kernel,Spectral Gap, |
| Publication Year : | 2023 |
| Degree: | 碩士 |
| Abstract: | 在這篇論文中,我們發展了一種新的伸縮方法,用於研究複流形線叢之高階張量冪的譜核與柏格曼核於局部譜間隙條件下的行為。特別的,我們給出了譜核和柏格曼核的逐點漸進性質的簡單證明。作為一個新結果,在純函數而不帶有形式的情況下,我們在具有指數衰減的譜間隙條件下得到了柏格曼核的主要項。此外,在 (0,q)-形式的一般情況下,即使線叢的曲率退化,漸進性質仍然成立。 In this thesis, we develop a new scaling method to study spectral and Bergman kernels for the k-th tensor power of a line bundle over a complex manifold under local spectral gap condition. In particular, we establish a simple proof of the pointwise asymptotics of spectral and Bergman kernels. As a new result, in the function case, we obtain the leading term of Bergman kernel under spectral gap with exponential decay. Moreover, in the general cases of (0,q)-forms, the asymptotics remain valid while the curvature of the line bundle is degenerate. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88770 |
| DOI: | 10.6342/NTU202302926 |
| Fulltext Rights: | 同意授權(限校園內公開) |
| metadata.dc.date.embargo-lift: | 2024-08-01 |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Access limited in NTU ip range | 889.6 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
