Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88729
Title: 基於雙重排名機制的深度學習模型軟混合濾波器剪枝
Soft Hybrid Filter Pruning using a Dual Ranking Approach
Authors: 陳鵬宇
Peng-Yu Chen
Advisor: 王勝德
Sheng-De Wang
Keyword: 深度學習,模型壓縮,模型剪枝,濾波器剪枝,軟剪枝,
Deep learning,Model Compression,Network pruning,Filter pruning,Soft pruning,
Publication Year : 2023
Degree: 碩士
Abstract: 過往的剪枝技術大多使用網路中的單一結構來進行評估,如卷積層(convolutional layer)或批量標準化層(batch-normalization layer),來決定剪枝目標。然而,這種方法沒辦法有效利用每個層中所有結構,因此效果有限。為了能更 加全面的考慮每個層中的各種結構,我們提出雙重排名軟混合濾波器剪枝 (Soft Hybrid Filter Pruning using a Dual Ranking Approach, DR-SHFP),該方法建立在軟剪枝(Soft Filter Pruning, SFP)的基礎上,並引入了雙重排名的方法。DR-SHFP使用了一個排名機制,並給每個濾波器一個排名,這個排名是由卷積層和批量標準化層共同決定的。通過同時評估這兩個層,我們的方法能夠更全面地捕捉來自層結構的信息,打破了單一結構評估的限制。因此,DR-SHFP 能夠更有效地識別和選擇要進行剪枝的濾波器,從而提高性能。實驗結果表明,DR-SHFP在CIFAR-10、CIFAR-100和Tiny-ImageNet等資料集上具有優異的性能。
Conventional pruning techniques typically focus on evaluating a single structure in the network, such as the convolutional layer or batch normalization layer, to identify pruning targets. However, this approach fails to effectively leverage the potential of all structures within each layer of the network. In order to comprehensively consider the various structures in each layer, we propose a novel method called Soft Hybrid Filter Pruning using a Dual Ranking Approach (DR-SHFP), which builds upon Soft Filter Pruning (SFP) by introducing a dual-ranking approach. DR-SHFP incorporates a ranking system that assigns a rank to each filter in a collaborative manner, taking into account both convolutional layers and batch normalization layers. By simultaneously evaluating both types of layers, our method captures more information from the layer structures, surpassing the limitations of single-structure evaluation. Consequently, DR-SHFP can identify and select filters more effectively for pruning, leading to improved performance. Experimental results demonstrate the effectiveness of DR-SHFP on benchmark datasets such as CIFAR-10, CIFAR-100 and Tiny-ImageNet. The proposed method outperforms other soft pruning methods, showcasing its capability to achieve excellent performance in various settings.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88729
DOI: 10.6342/NTU202303335
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2024-08-31
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
Access limited in NTU ip range
689.24 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved