請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88698
標題: | 康托爾集之法瓦德長之極限行為 Limit Behavior of Favard Length of Cantor sets |
作者: | 吳悠 Yu Wu |
指導教授: | 沈俊嚴 Chun-Yen Shen |
關鍵字: | 法瓦德長,康托爾集,別西科維奇投影,幾何測度論, Favard length,Cantor sets,Besicovitch projection,geometric-measure theory, |
出版年 : | 2023 |
學位: | 碩士 |
摘要: | 在過去對於古典布豐投針的研究中,法瓦德長之概念被提出。法瓦德長是一種以集合對各個方向之投影來度量的幾何量。在R2中一個特定的集合,四角康托爾集,之法瓦德長已被研究數年。根據別西科維奇投影定理,四角康托爾集之法瓦德長為零。一個自然的問題是研究對於其康托爾方塊之法瓦德長極限行為之量化描述。本篇論文之目的在於調查過去關於四角康托爾集之法瓦德長問題,及討論將過去發展之方法推廣至五角康托爾集之可行性。 From the studies of classical Buffon needle problem, the concept of Favard length had been investigated. It is a geometric quantity of a set by measuring its projections behaviors on lines. In R2, a particular case, the four-corner Cantor set, has been studied for years. By Besicovitch projection theorem, the Favard length of four-corner Cantor set is zero. A nature question that was asked is to establish a quantitative rate of the convergence of Favard length in terms of its n-th generation. The purposes of this thesis are to survey the limit behavior of Favard length of Cantor set and Cantor-like set in R2 and discuss if the pioneer’s result can be generalized to five-corner Cantor set. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88698 |
DOI: | 10.6342/NTU202302276 |
全文授權: | 同意授權(限校園內公開) |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。