Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88698
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈俊嚴zh_TW
dc.contributor.advisorChun-Yen Shenen
dc.contributor.author吳悠zh_TW
dc.contributor.authorYu Wuen
dc.date.accessioned2023-08-15T17:25:04Z-
dc.date.available2023-11-10-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-28-
dc.identifier.citationM. Bateman and A. Volberg. An estimate from below for the Buffon needle probability of the four-corner Cantor set. Mathematical Research Letters, 17(5):959-967, 2010.
A.S. Besicovitch. Tangential properties of sets and arcs of infinite linear measure. Bulletin of the American Mathematical Society, 60(3):353-359, 1960.
F. Nazarov, Y. Peres, and A. Volberg. The power law for the Buffon needle probbility of the four-corner Cantor set. St. Petersburg Mathematical Journal, 34(3):61-72, 2011.
Y. Peres and B. Solomyak. How likely is Buffon's needle to fall near a planar Cantor set? Pacific Journal of Mathematics, 204(2):473-496, 2002.
A. Volberg. Buffon needle: The probability of Buffon needle to land near Cantor set. EIMI Winter School, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88698-
dc.description.abstract在過去對於古典布豐投針的研究中,法瓦德長之概念被提出。法瓦德長是一種以集合對各個方向之投影來度量的幾何量。在R2中一個特定的集合,四角康托爾集,之法瓦德長已被研究數年。根據別西科維奇投影定理,四角康托爾集之法瓦德長為零。一個自然的問題是研究對於其康托爾方塊之法瓦德長極限行為之量化描述。本篇論文之目的在於調查過去關於四角康托爾集之法瓦德長問題,及討論將過去發展之方法推廣至五角康托爾集之可行性。zh_TW
dc.description.abstractFrom the studies of classical Buffon needle problem, the concept of Favard length had been investigated. It is a geometric quantity of a set by measuring its projections behaviors on lines. In R2, a particular case, the four-corner Cantor set, has been studied for years. By Besicovitch projection theorem, the Favard length of four-corner Cantor set is zero. A nature question that was asked is to establish a quantitative rate of the convergence of Favard length in terms of its n-th generation. The purposes of this thesis are to survey the limit behavior of Favard length of Cantor set and Cantor-like set in R2 and discuss if the pioneer’s result can be generalized to five-corner Cantor set.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:25:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:25:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents1. Introduction p.1
1.1. Favard length of standard four-corner Cantor set p.1
1.2. Surveys and historical notes p.3
1.3. Favard length of five-corner Cantor set p.3
2. Lower bound estimate p.6
2.1. Counting function p.6
2.2. Pairing of cubes p.7
3. Upper bound estimate
3.1. Preparation p.13
3.2. Good direction p.18
3.3. L^2 norm of counting function f_{t,n} p.22
A. Notations p.36
B. Reference p.37
-
dc.language.isoen-
dc.subject幾何測度論zh_TW
dc.subject別西科維奇投影zh_TW
dc.subject法瓦德長zh_TW
dc.subject康托爾集zh_TW
dc.subjectCantor setsen
dc.subjectFavard lengthen
dc.subjectBesicovitch projectionen
dc.subjectgeometric-measure theoryen
dc.title康托爾集之法瓦德長之極限行為zh_TW
dc.titleLimit Behavior of Favard Length of Cantor setsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳逸昆;李冀zh_TW
dc.contributor.oralexamcommitteeI-Kun Chen;Ji Lien
dc.subject.keyword法瓦德長,康托爾集,別西科維奇投影,幾何測度論,zh_TW
dc.subject.keywordFavard length,Cantor sets,Besicovitch projection,geometric-measure theory,en
dc.relation.page37-
dc.identifier.doi10.6342/NTU202302276-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-31-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved