Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88606
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹瀅潔zh_TW
dc.contributor.advisorYing-Chieh Chanen
dc.contributor.author顏騰涁zh_TW
dc.contributor.authorGan Quan Shengen
dc.date.accessioned2023-08-15T17:02:07Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-03-
dc.identifier.citationAbd-Alhamid, F., Kent, M., Bennett, C., Calautit, J., & Wu, Y. (2019). Developing an Innovative Method for Visual Perception Evaluation in a Physical-Based Virtual Environment. Building and Environment, 162. https://doi.org/10.1016/j.buildenv.2019.106278
Abd-Alhamid, F., Kent, M., Calautit, J., & Wu, Y. (2020). Evaluating the impact of viewing location on view perception using a virtual environment. Building and Environment, 180, 106932. https://doi.org/https://doi.org/10.1016/j.buildenv.2020.106932
AmericanBirdConservancy. (2023). About ABC's Threat Factor Rating System. Retrieved February 4 from https://abcbirds.org/glass-collisions/products-database/
Atkins, C. (2023). What Colors Are Birds Attracted to? - 4 Bird's Favorite Color. Thayer Birding. Retrieved June 18 from https://www.thayerbirding.com/what-colors-are-birds-attracted-to/
AudubonMinnesota. (2016). Bird Safe Buildings Guidelines. Retrieved February 4 from https://mn.audubon.org/conservation/birdsafe-buildings
BREEAM. BRE Group. Retrieved May 13 from https://bregroup.com/products/breeam/
Carbonell-Carrera, C., & Saorín, J. L. (2017). Geospatial Google Street View with Virtual Reality: A Motivational Approach for Spatial Training Education. ISPRS International Journal of Geo-Information, 6(9). https://doi.org/10.3390/ijgi6090261
Chamilothori, K., Wienold, J., & Andersen, M. (2018). Adequacy of Immersive Virtual Reality for the Perception of Daylit Spaces: Comparison of Real and Virtual Environments. LEUKOS The Journal of the Illuminating Engineering Society of North America, 15. https://doi.org/10.1080/15502724.2017.1404918
Cooper, C. (2020). Retrofitting patterned glazing to the Javits Center in New York reduced bird deaths from window strikes by 90%. In building-bird-protection (Ed.): ICE Group.
DGNB. Deutsche Gesellschaft für Nachhaltiges Bauen. Retrieved May 13 from https://www.dgnb-system.de/en/index.php
Domjan, S., Arkar, C., & Medved, S. (2023). Study on occupants' window view quality vote and their physiological response. Journal of Building Engineering, 68, 106119. https://doi.org/https://doi.org/10.1016/j.jobe.2023.106119
Drobne, S., Zbašnik-Senegačnik, M., Kristl, Ž., Koprivec, L., & Fikfak, A. (2021). Analysis of the Window Views of the Nearby Façades. Sustainability, 14(1). https://doi.org/10.3390/su14010269
Drobne, S., Zbašnik-Senegačnik, M., Kristl, Ž., Koprivec, L., & Fikfak, A. (2022). Analysis of the Window Views of the Nearby Façades. Sustainability, 14(1).
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/BF03193146
Flamant, G., Bustamante, W., Tzempelikos, A., & Vera, S. (2022). Evaluation of view clarity through solar shading fabrics. Building and Environment, 212, 108750. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108750
Glas, A. Supermikado at a home in Michigan. In: American Bird Conservancy.
Haritonova, A. AR/VR in Construction: What Does It Bring to the Industry? PixelPlex. Retrieved June 11 from https://pixelplex.io/blog/ar-vr-in-construction/
Higuera-Trujillo, J. L., Lopez-Tarruella Maldonado, J., & Llinares Millan, C. (2017). Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360 degrees Panoramas, and Virtual Reality. Appl Ergon, 65, 398-409. https://doi.org/10.1016/j.apergo.2017.05.006
Hong, T., Lee, M., Yeom, S., & Jeong, K. (2019). Occupant responses on satisfaction with window size in physical and virtual built environments. Building and Environment, 166. https://doi.org/10.1016/j.buildenv.2019.106409
Johns, R. (2017). Buildings Using Bird-Friendly Design Now Eligible for LEED Credit. https://abcbirds.org/news/buildings-using-bird-friendly-design-now-eligible-for-leed-credit/
Karmann, C., Chinazzo, G., Schüler, A., Manwani, K., Wienold, J., & Andersen, M. (2023). User assessment of fabric shading devices with a low openness factor. Building and Environment, 228, 109707. https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109707
Keighley, E. C. (1973a). Visual requirements and reduced fenestration in office buildings — A study of window shape. Building Science, 8(4), 311-320. https://doi.org/https://doi.org/10.1016/0007-3628(73)90016-9
Keighley, E. C. (1973b). Visual requirements and reduced fenestration in offices — a study of multiple apertures and window area. Building Science, 8(4), 321-331. https://doi.org/https://doi.org/10.1016/0007-3628(73)90017-0
Kent, M., & Schiavon, S. (2020). Evaluation of the effect of landscape distance seen in window views on visual satisfaction. Building and Environment, 183. https://doi.org/10.1016/j.buildenv.2020.107160
Kim, D. J.-J., & Taubman, J. W. (2005). Are Windows and Views Really Better? A Quantitative Analysis of the Economic and Psychological Value of Views.
Klem, J. D. (2009). Preventing Bird–Window Collisions. The Wilson Journal of Ornithology, 121, 314-321. https://doi.org/10.1676/08-118.1
Klepeis, N., Nelson, W., Ott, W., & Robinson, J. (2001). The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants.
Ko, W. H., Kent, M. G., Schiavon, S., Levitt, B., & Betti, G. (2021). A Window View Quality Assessment Framework. LEUKOS, 1-26. https://doi.org/10.1080/15502724.2021.1965889
Ko, W. H., Schiavon, S., Altomonte, S., Andersen, M., Batool, A., Browning, W., Burrell, G., Chamilothori, K., Chan, Y.-C., Chinazzo, G., Christoffersen, J., Clanton, N., Connock, C., Dogan, T., Faircloth, B., Fernandes, L., Heschong, L., Houser, K. W., Inanici, M., . . . Wienold, J. (2022). Window View Quality: Why It Matters and What We Should Do. LEUKOS, 18(3), 259-267. https://doi.org/10.1080/15502724.2022.2055428
Ko, W. H., Schiavon, S., Santos, L., Kent, M. G., Kim, H., & Keshavarzi, M. (2023). View access index: The effects of geometric variables of window views on occupants’ satisfaction. Building and Environment, 234, 110132. https://doi.org/https://doi.org/10.1016/j.buildenv.2023.110132
Konstantzos, I., Chan, Y.-C., Seibold, J. C., Tzempelikos, A., Proctor, R. W., & Protzman, J. B. (2015). View clarity index: A new metric to evaluate clarity of view through window shades. Building and Environment, 90, 206-214. https://doi.org/https://doi.org/10.1016/j.buildenv.2015.04.005
Kuliga, S. F., Thrash, T., Dalton, R. C., & Hölscher, C. (2015). Virtual reality as an empirical research tool — Exploring user experience in a real building and a corresponding virtual model. Computers, Environment and Urban Systems, 54, 363-375. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2015.09.006
Lee, E. S., Matusiak, B. S., Geisler-Moroder, D., Selkowitz, S. E., & Heschong, L. (2022). Advocating for view and daylight in buildings: Next steps. Energy and Buildings, 265, 112079. https://doi.org/https://doi.org/10.1016/j.enbuild.2022.112079
LEED. Quality views. U.S. Green Building Council. Retrieved September 22 from https://www.usgbc.org/credits/new-construction-schools-new-construction-retail-new-construction-data-centers-new-4
Lin, T.-Y., Le, A.-V., & Chan, Y.-C. (2022). Evaluation of window view preference using quantitative and qualitative factors of window view content. Building and Environment, 213, 108886. https://doi.org/https://doi.org/10.1016/j.buildenv.2022.108886
Local Law 15 of 2020 - NYC.gov, (2020). https://www.nyc.gov/assets/buildings/local_laws/ll15of2020.pdf
Loss, S. R., Will, T., Loss, S. S., & Marra, P. P. (2014). Bird–building collisions in the United States: Estimates of annual mortality and species vulnerability. The Condor, 116(1), 8-23. https://doi.org/10.1650/CONDOR-13-090.1
Lottrup, L., Grahn, P., & Stigsdotter, U. (2013). Workplace greenery and perceived level of stress: Benefits of access to a green outdoor environment at the workplace. Landscape and Urban Planning, 110, 5-11. https://doi.org/10.1016/j.landurbplan.2012.09.002
Markus, T. A. (1967). The function of windows— A reappraisal. Building Science, 2(2), 97-121. https://doi.org/https://doi.org/10.1016/0007-3628(67)90012-6
Matusiak, B., & Klöckner, C. (2015). How we evaluate the view out through the window. Architectural Science Review, 59, 1-9. https://doi.org/10.1080/00038628.2015.1032879
Moscoso, C., Nazari, M., & Matusiak, B. S. (2022). Stereoscopic Images and Virtual Reality techniques in daylighting research: A method-comparison study. Building and Environment, 214. https://doi.org/10.1016/j.buildenv.2022.108962
North American Bird Conservation Initiative, U. S. C. (2014). The State of the Birds 2014 Report.
Ocampo-Penuela, N., Winton, R., Wu, C., Zambello, E., Wittig, T., & Cagle, N. (2016). Patterns of bird-window collisions inform mitigation on a university campus. PeerJ, 4. https://doi.org/10.7717/peerj.1652
Oglęcki, P., & Żabicka, J. (2023). MORTALITY OF BIRDS AS A RESULT OF COLLISIONS WITH GLAZING ON THE EXAMPLE OF BUILDING STRUCTURES IN WARSAW. Zeszyty Naukowe SGSP, 85, 43-58. https://doi.org/10.5604/01.3001.0016.3278
Orquin, J. L., & Mueller Loose, S. (2013). Attention and choice: A review on eye movements in decision making. Acta Psychologica, 144(1), 190-206. https://doi.org/https://doi.org/10.1016/j.actpsy.2013.06.003
Park, S., & Lee, G. (2020). Full-immersion virtual reality: Adverse effects related to static balance. Neuroscience Letters, 733, 134974. https://doi.org/https://doi.org/10.1016/j.neulet.2020.134974
Richardson, J. T. E. (2018). The use of Latin-square designs in educational and psychological research. Educational Research Review, 24, 84-97. https://doi.org/https://doi.org/10.1016/j.edurev.2018.03.003
Rodriguez, F., Garcia-Hansen, V., Allan, A., & Isoardi, G. (2021). Subjective responses toward daylight changes in window views: Assessing dynamic environmental attributes in an immersive experiment. Building and Environment, 195. https://doi.org/10.1016/j.buildenv.2021.107720
Roettl, J., & Terlutter, R. (2018). The same video game in 2D, 3D or virtual reality – How does technology impact game evaluation and brand placements? PLOS ONE, 13(7), e0200724. https://doi.org/10.1371/journal.pone.0200724
Rössler, M., Nemeth, E., & Bruckner, A. (2015). Glass pane markings to prevent bird-window collisions: Less can be more. Biologia, 70. https://doi.org/10.1515/biolog-2015-0057
Rutter, J. (2023). How Much Does Bird-Friendly Glass Actually Cost? - A Q&A with American Bird Conservancy’s team of bird collisions experts. https://abcbirds.org/news/cost-of-bird-friendly-glass/
Seo, H.-M., Kim, Y.-J., Lee, E.-J., Lee, S.-G., Lee, W.-S., & Choi, C.-Y. (2023). Another emerging threat to birds: avian mortality estimates from roadside transparent noise barrier collisions in South Korea. Bird Conservation International, 33, e50, Article e50. https://doi.org/10.1017/S0959270922000454
Sheppard, C., & Phillips, G. (2015). Bird-Friendly Building Design (2nd ed.). American Bird Conservancy.
Sheppard, C. D. (2019). Evaluating the relative effectiveness of patterns on glass as deterrents of bird collisions with glass. Global Ecology and Conservation, 20, e00795. https://doi.org/https://doi.org/10.1016/j.gecco.2019.e00795
SibleyGuides. (2003). Causes of Bird Mortality. Retrieved March 13 from https://www.sibleyguides.com/conservation/causes-of-bird-mortality/?fbclid=IwAR09dagjsqkw36OHUJ3gHbTxVJbL65IVWw-5abMlmuCgpgLKsCa0SVFNkhQ
Son, H., Jeon, H., & Kwon, S. (2017). Study on Distortion and Field of View of Contents in VR HMD. International Journal of Advanced Smart Convergence, 6, 18-25. https://doi.org/10.7236/IJASC
Stone, N. J., & Irvine, J. M. (1994). Direct or indirect window access, task type, and performance. Journal of Environmental Psychology, 14(1), 57-63. https://doi.org/https://doi.org/10.1016/S0272-4944(05)80198-7
Tan, Y., Xu, W., Li, S., & Chen, K. (2022). Augmented and Virtual Reality (AR/VR) for Education and Training in the AEC Industry: A Systematic Review of Research and Applications. Buildings, 12(10).
Tews, A. (2022). LEED Certified Buildings and Bird-Friendly Window Design. UF Journal of Undergraduate Research, 24. https://doi.org/10.32473/ufjur.24.130839
USGBC. (2018). Retrieved 28 October, 2022 from https://www.usgbc.org/
van Esch, E., Minjock, R., Colarelli, S. M., & Hirsch, S. (2019). Office window views: View features trump nature in predicting employee well-being. Journal of Environmental Psychology, 64, 56-64. https://doi.org/https://doi.org/10.1016/j.jenvp.2019.05.006
Watanabe, H., & Ujike, H. (2008, 15-16 Dec. 2008). The Activity of ISO/Study Group on “Image Safety” and Three Biological Effect. 2008 Second International Symposium on Universal Communication,
WELL. WELL Building Standard. Retrieved May 13 from https://standard.wellcertified.com/well
Wikipedia. (2023a). Fisher–Yates shuffle. Wikipedia. Retrieved June 27 from https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
Wikipedia. (2023b). 綠色建築. Wikipedia. Retrieved June 8 from https://zh.wikipedia.org/zh-tw/%E7%B6%A0%E8%89%B2%E5%BB%BA%E7%AF%89
Yeom, S., Kim, H., Hong, T., & Lee, M. (2020). Determining the optimal window size of office buildings considering the workers' task performance and the building's energy consumption. Building and Environment, 177. https://doi.org/10.1016/j.buildenv.2020.106872
Yeom, S., Kim, H., Hong, T., Park, H. S., & Lee, D.-E. (2020). An integrated psychological score for occupants based on their perception and emotional response according to the windows’ outdoor view size. Building and Environment, 180. https://doi.org/10.1016/j.buildenv.2020.107019
Zou, Z., & Ergan, S. (2019, 2019//). Where Do We Look? An Eye-Tracking Study of Architectural Features in Building Design. Advances in Informatics and Computing in Civil and Construction Engineering, Cham.
建築技術規則建築設計施工編, (2021). https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=D0070115&flno=308-1
林書帆,賴冠丞. (2020). 看不見的陷阱:窗殺. 環境資訊中心. Retrieved March 16 from https://e-info.org.tw/node/228144
王孜筠. (2022). 近十年內政部綠建築標章核發件數,於民國110年達1041件,創下新高。. In: 《小世界周報》.
王孜筠,陳美澐,何晉岑. (2022). 窗殺鳥擊誰人知 都市裡悄無聲息的謀殺. 《小世界周報》. Retrieved March 16 from http://shuj.shu.edu.tw/blog/2022/04/02/%E7%AA%97%E6%AE%BA%E9%B3%A5%E6%93%8A%E8%AA%B0%E4%BA%BA%E7%9F%A5-%E9%83%BD%E5%B8%82%E8%A3%A1%E6%82%84%E7%84%A1%E8%81%B2%E6%81%AF%E7%9A%84%E8%AC%80%E6%AE%BA/
王齡敏. (2020). 窗殺事件:鳥類的隱形殺手. 科學月刊. Retrieved June 8 from https://pansci.asia/archives/182383
社團法人台灣猛禽研究會. (2021). 窗事發-談野鳥窗殺.
陳美澐. (2022). 從校園內實踐友善鳥類計劃. In: 《小世界周報》.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88606-
dc.description.abstract防窗殺貼紙的設計對於保護鳥類生態環境和提供居住者更好的窗景品質具有重要的意義。然而,目前對於不同圖案設計對窗景滿意度的影響仍存在研究上的空白。因此,本研究旨在評估不同的防窗殺圖案設計對窗景滿意度的影響。本研究設計了18個防窗殺圖案,包括點陣、垂直條紋和水平條紋三種主要圖案類型,3%、5%和10%的覆蓋率與大和小間距比例的組合。透過招募60位受試者,以VR技術為工具,對視野清晰度和視野干擾度進行評分,探討圖案設計對窗景滿意度的影響。
研究結果顯示防窗殺貼紙圖案設計對窗景滿意度有顯著影響。水平和垂直條紋類型的圖案相對於點陣圖案設計在提高窗景滿意度的表現更好。此外,受試者的滿意度隨覆蓋率的增加而降低,且具顯著差異。在間距比例設計方面,大間距比例設計的滿意度比小間距比例設計更好。最適合防窗殺貼紙設計可以在保護鳥類生態環境的同時提供更好的窗景觀察體驗。
這項研究填補了現有研究中關於防窗殺貼紙圖案設計對窗景影響的研究空白。研究結果可為現有綠建築標準對窗戶品質的評估規範提供重要的參考。選擇最適合的防窗殺貼紙圖案設計,同時建立一個可持續和人性化的城市環境。
zh_TW
dc.description.abstractThe design of bird collision prevention window decals is of significant importance in protecting avian ecology and providing enhanced window views for occupants. However, there is currently a research gap regarding the impact of different pattern designs on window view satisfaction. Therefore, this study aims to evaluate the influence of various bird collision prevention pattern designs on window view satisfaction. A total of 18 bird collision prevention patterns were designed, including dot matrix, vertical stripes, and horizontal stripes, with combinations of 3%, 5%, and 10% coverage rates and different spacing ratios. By recruiting 60 participants, using virtual reality (VR) technology as a tool, visual clarity and visual interference were rated to examine the effect of pattern designs on window view satisfaction.
The results revealed a significant impact of bird collision prevention decal pattern designs on window view satisfaction. The designs featuring horizontal and vertical stripes performed better in enhancing window view satisfaction compared to the dot matrix pattern. Additionally, participants' satisfaction decreased with increasing coverage rates, showing a significant difference among different rates. Regarding the spacing ratio designs, the designs with larger spacing ratios were associated with higher satisfaction compared to smaller spacing ratios. The optimal bird collision prevention decal design can provide an improved window observation experience while preserving avian ecology.
This study contributes to filling the research gap concerning the influence of bird collision prevention decal pattern designs on window views. The findings offer valuable insights for the evaluation criteria of window quality in existing green building standards. Selecting the most suitable bird collision prevention decal pattern design can contribute to establishing a sustainable and human-friendly urban environment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:02:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:02:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究流程 3
第二章 文獻回顧 4
2.1 窗戶在建築設計的重要性 4
2.2 窗戶視野品質評估 5
2.2.1 窗景清晰度 6
2.3 窗殺 7
2.3.1 造成窗殺的原因 8
2.3.2 城市發展下的犧牲者 9
2.3.3 威脅因數(Threat Factor)與預防窗殺 11
2.4 以問卷形式評估窗景(問卷設計,實驗流程設計) 13
2.5 VR應用於建築環境研究 14
2.6 小結 15
第三章 研究方法 16
3.1 方法架構 16
3.2 工具選擇 16
3.3 實驗設計:防窗殺貼紙圖案設計 18
3.4 場景拍攝與虛擬實境建模 22
3.4.1 場景拍攝 23
3.4.2 虛擬環境之3D模型 24
3.4.3 VR設備 25
3.5 滿意度問卷 26
3.6 實驗進行程序 26
3.7 參與者 27
3.8 實驗結果的分析 28
3.9 小結 29
第四章 結果與討論 30
4.1 參與者對防窗殺圖案的評估 30
4.2 常態性分佈分析 33
4.3 參與者對不同標記類型設計的反應的比較分析 34
4.4 參與者對不同覆蓋率設計的反應的比較分析 37
4.5 參與者對不同間距比例設計的反應的比較分析 41
4.6 小結 43
4.7 討論 44
4.7.1 受試者的回饋 44
4.7.2 場景的影響 46
4.7.3 實驗問卷設計 47
4.7.4 實驗流程設計 49
4.8 研究限制 50
4.8.1 VR設備 50
4.8.2 防窗殺圖案設計 51
4.9 未來展望 53
第五章 結論與建議 54
參考文獻 55
-
dc.language.isozh_TW-
dc.subject窗殺zh_TW
dc.subject生態永續zh_TW
dc.subject鳥類友善zh_TW
dc.subject窗景品質zh_TW
dc.subject窗殺預防zh_TW
dc.subjectBird-friendlyen
dc.subjectWindow view qualityen
dc.subjectBird collision preventionen
dc.subjectGlass collisionsen
dc.subjectEcological sustainabilityen
dc.title評估防窗殺貼紙圖案設計對窗景的影響zh_TW
dc.titleEvaluating the impact of bird collisions prevention glazing pattern design on window viewsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee汪立本;黃國倉zh_TW
dc.contributor.oralexamcommitteeLi-Pen Wang;Kuo-Tsang Huangen
dc.subject.keyword窗殺,窗殺預防,窗景品質,鳥類友善,生態永續,zh_TW
dc.subject.keywordGlass collisions,Bird collision prevention,Window view quality,Bird-friendly,Ecological sustainability,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202302632-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved