Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88588
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建錦zh_TW
dc.contributor.advisorChien Chin Chenen
dc.contributor.author簡辰安zh_TW
dc.contributor.authorChen-An Chienen
dc.date.accessioned2023-08-15T16:57:31Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-28-
dc.identifier.citationAlnahhal, M., Ahrens, D., and Salah, B. (2021). Dynamic lead-time forecasting using machine learning in a make-to-order supply chain. Applied Sciences, 11(21):10105.
Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063.
Bai, J., Zhu, J., Song, Y., Zhao, L., Hou, Z., Du, R., and Li, H. (2021). A3t-gcn: Attention temporal graph convolutional network for traffic forecasting. ISPRS International Journal of Geo-Information, 10(7):485.
Berk, J., DeMarzo, P., Harford, J., Ford, G., Mollica, V., and Finch, N. (2013). Fundamentals of corporate finance. Pearson Higher Education AU.
Brown, A. O., Lee, H. L., and Petrakian, R. (2000). Xilinx improves its semiconductor supply chain using product and process postponement. Interfaces, 30(4):65–80.
Brownlee, J. (2016). XGBoost With python: Gradient boosted trees with XGBoost and scikit-learn. Machine Learning Mastery.
Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.
Carbonneau, R., Laframboise, K., and Vahidov, R. (2008). Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research, 184(3):1140–1154.
Chen, C.-C., Huang, H.-H., Huang, Y.-L., and Chen, H.-H. (2021). Distilling numeral information for volatility forecasting. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 2920–2924.
Chien, C.-F., Lin, Y.-S., and Lin, S.-K. (2020). Deep reinforcement learning for selecting demand forecast models to empower industry 3.5 and an empirical study for a semiconductor component distributor. International Journal of Production Research, 58(9):2784–2804.
Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in Neural Information Processing Systems, 29.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Dosdog ̆ru, A. T., Boru ̇Ipek, A., and Go ̈c ̧ken, M. (2021). A novel hybrid artificial intelligence-based decision support framework to predict lead time. International Journal of Logistics Research and Applications, 24(3):261–279.
Gopal, A. and Chang, C. (2021). Discovering supply chain links with augmented intelligence. arXiv preprint arXiv:2111.01878.
Guin, U., Huang, K., DiMase, D., Carulli, J. M., Tehranipoor, M., and Makris, Y. (2014). Counterfeit integrated circuits: A rising threat in the global semiconductor supply chain. Proceedings of the IEEE, 102(8):1207–1228.
Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in Neural Information Processing Systems, 30.
Islam, S. and Amin, S. H. (2020a). Prediction of probable backorder scenarios in the supply chain using distributed random forest and gradient boosting machine learning techniques. Journal of Big Data, 7(1):1–22.
Islam, S. and Amin, S. H. (2020b). Prediction of probable backorder scenarios in the supply chain using distributed random forest and gradient boosting machine learning techniques. Journal of Big Data, 7(1):1–22.
Jain, A., Zamir, A. R., Savarese, S., and Saxena, A. (2016). Structural-rnn: Deep learning on spatio-temporal graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5308–5317.
Khare, A., He, Q., and Batta, R. (2020). Predicting gasoline shortage during disasters using social media. OR Spectrum, 42(3):693–726.
Kitchin, J. (1923). Cycles and trends in economic factors. The Review of Economic Statistics, pages 10–16.
Kosasih, E. E. and Brintrup, A. (2022). A machine learning approach for predicting hidden links in supply chain with graph neural networks. International Journal of Production Research, 60(17):5380–5393.
Kosasih, E. E., Margaroli, F., Gelli, S., Aziz, A., Wildgoose, N., and Brintrup, A. (2022). Towards knowledge graph reasoning for supply chain risk management using graph neural networks. International Journal of Production Research, pages 1–17.
Krolikowski, P. M. and Naggert, K. (2021). Semiconductor shortages and vehicle production and prices. Economic Commentary, (2021-17).
Leibovici, F. and Dunn, J. (2021). Supply chain bottlenecks and inflation: the role of semiconductors. Federal Reserve Bank of St. Louis Economic Synopses, 28.
Li, J., Yang, L., Smyth, B., and Dong, R. (2020). Maec: A multimodal aligned earnings conference call dataset for financial risk prediction. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pages 3063–3070.
Lingitz, L., Gallina, V., Ansari, F., Gyulai, D., Pfeiffer, A., Sihn, W., and Monostori, L. (2018). Lead time prediction using machine learning algorithms: A case study by a semiconductor manufacturer. Procedia Cirp, 72:1051–1056.
Matsumoto, D., Pronk, M., and Roelofsen, E. (2011). What makes conference calls useful? the information content of managers’ presentations and analysts’ discussion sessions. The Accounting Review, 86(4):1383–1414.
Mohammad, W., Elomri, A., and Kerbache, L. (2022). The global semiconductor chip shortage: Causes, implications, and potential remedies. IFAC-PapersOnLine, 55(10):476–483.
Mo ̈nch, L., Uzsoy, R., and Fowler, J. W. (2018). A survey of semiconductor supply chain models part i: semiconductor supply chains, strategic network design, and supply chain simulation. International Journal of Production Research, 56(13):4524–4545.
Namdar, J., Torabi, S. A., Sahebjamnia, N., and Nilkanth Pradhan, N. (2021). Business continuity-inspired resilient supply chain network design. International Journal of Production Research, 59(5):1331–1367.
Peels, R., Udenio, M., Fransoo, J. C., Wolfs, M., Hendrikx, T., NeoResins, D., and Fransoo, J. C. (2009). Responding to the lehman wave: Sales forecasting and supply management during the credit crisis. Dec, 5(2697):1–20.
Pei, H. (2021). Accounting qualitative information in conference calls and future earnings. Pan-Pacific Journal of Business Research, 12(1):1–28.
Pereira, C. R., Christopher, M., and Da Silva, A. L. (2014). Achieving supply chain resilience: the role of procurement. Supply Chain Management: an International Journal.
Petropoulos, F., Wang, X., and Disney, S. M. (2019). The inventory performance of forecasting methods: Evidence from the m3 competition data. International Journal of Forecasting, 35(1):251–265.
Qin, Y. and Yang, Y. (2019a). What you say and how you say it matters: Predicting stock volatility using verbal and vocal cues. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 390–401.
Qin, Y. and Yang, Y. (2019b). What you say and how you say it matters: Predicting stock volatility using verbal and vocal cues. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 390–401.
Rahman, T., Paul, S. K., Shukla, N., Agarwal, R., and Taghikhah, F. (2022). Supply chain resilience initiatives and strategies: A systematic review. Computers & Industrial Engineering, page 108317.
Rajesh, R. (2016). Forecasting supply chain resilience performance using grey prediction. Electronic Commerce Research and Applications, 20:42–58.
Rajesh, R. (2019). A fuzzy approach to analyzing the level of resilience in manufacturing supply chains. Sustainable Production and Consumption, 18:224–236.
Rodriguez, J. J. R. (2021). Predicting stock price movements in supply chain networks. PhD thesis, University of Iowa.
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008). The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80.
Segal, M. R. (2004). Machine learning benchmarks and random forest regression.
Siva Kumar, P. and Anbanandam, R. (2020). Theory building on supply chain resilience: a sap–lap analysis. Global Journal of Flexible Systems Management, 21(2):113–133.
Smola, A. J. and Scho ̈lkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14:199–222.
Soni, U., Jain, V., and Kumar, S. (2014). Measuring supply chain resilience using a deterministic modeling approach. Computers & Industrial Engineering, 74:11–25.
Steen, M. (2009). Lehman wave’set to help track recovery. Financial Times.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
Velicˇkovic ́, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
Wang, A. Z., Ying, R., Li, P., Rao, N., Subbian, K., and Leskovec, J. (2021a). Bipartite dynamic representations for abuse detection. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 3638–3648.
Wang, L., Li, P., Xiong, K., Zhao, J., and Lin, R. (2021b). Modeling heterogeneous graph network on fraud detection: A community-based framework with attention mechanism. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 1959–1968.
Weisberg, S. (2005). Applied linear regression, volume 528. John Wiley & Sons.
Wu, D., Wang, Q., and Olson, D. L. (2021). Industry classification based on supply chain network information using graph neural networks. Available at SSRN 4084265.
Wu, D. A. (2022). Text-based measure of supply chain risk exposure. Available at SSRN 4158073.
Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., and Tan, T. (2019). Session-based recommendation with graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 346–353.
Xue, N., Triguero, I., Figueredo, G. P., and Landa-Silva, D. (2019). Evolving deep cnn-lstms for inventory time series prediction. In 2019 IEEE Congress on Evolutionary Computation (CEC), pages 1517–1524. IEEE.
Yang, L., Ng, T. L. J., Smyth, B., and Dong, R. (2020). Html: Hierarchical transformer-based multi-task learning for volatility prediction. In Proceedings of The Web Conference 2020, pages 441–451.
Yang, S., Zhang, Z., Zhou, J., Wang, Y., Sun, W., Zhong, X., Fang, Y., Yu, Q., and Qi, Y. (2021). Financial risk analysis for smes with graph-based supply chain mining. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pages 4661–4667.
Ye, B., Yang, S., Hu, B., Zhang, Z., He, Y., Huang, K., Zhou, J., and Fang, Y. (2022). Gaia: Graph neural network with temporal shift aware attention for gross merchandise value forecast in e-commerce. In 2022 IEEE 38th International Conference on Data Engineering (ICDE), pages 3320–3326. IEEE.
Ye, Z., Qin, Y., and Xu, W. (2020). Financial risk prediction with multi-round q&a attention network. In IJCAI, pages 4576–4582.
Yoon, K. (2014). Convolutional neural networks for sentence classification [ol]. arXiv Preprint.
Yu, B., Yin, H., and Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875.
Yu, L., Zhao, Y., Tang, L., and Yang, Z. (2019). Online big data-driven oil consumption forecasting with google trends. International Journal of Forecasting, 35(1):213–223.
Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., and Li, H. (2019). T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 21(9):3848–3858.
Zhu, J., Wang, Q., Tao, C., Deng, H., Zhao, L., and Li, H. (2021). Ast-gcn: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting. IEEE Access, 9:35973–35983.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88588-
dc.description.abstract半導體產業的高成本、垂直分工的供應鏈及短暫的產品生命週期使其非常仰賴穩定的供應鏈,供應鏈的延遲可能會導致生產停滯與伴隨而來的財務損失。為了使半導體公司得以即使依照上游供應情況調整生產計劃,準確預測供應是否有短缺的風險至關重要。本論文提出了一種供應鏈短缺預測模型,為了透過時序圖神經網路 (TGNN) 分析財務與文字資料,我們結合了存貨週期 (DOI) 和法說會逐字稿,並以實際案例證明其可以用於供應短缺預測。我們將供應鏈構建成一個網路,藉由考量上下游供應商之間的關係,試圖捕捉當上游供貨不穩定時,下游被波及的可能性與時間。為了驗證模型,我們收集了2018年至2022年的五年間台灣積體電路製造股份有限公司 (TSMC) 的數據,其中包含供應商的供應鏈關係、財務數字及法說會逐字稿,並以實驗證明了機器學習模型在預測供應短缺方面的有效性,還有法說會逐字稿可以做為輔助潛在短缺預測的指標。本研究開啟了將財務數字、文字及供應鏈關係整合到TGNN中以預測供應短缺的可能性,為半導體供應商供應短缺提供了一種解決方法,並具有未來應用和研究的潛力。zh_TW
dc.description.abstractThe semiconductor industry heavily relies on a well-functioning and efficient supply chain due to its high cost, vertically divided supply chain, and short product life cycles. Delays in the supply chain can lead to production stagnation and associated financial losses. Accurately forecasting supply shortages is crucial for semiconductor companies to adjust their production plans based on upstream supply conditions. This master thesis proposes a supply chain shortage forecasting model that utilizes a Temporal Graph Neural Network (TGNN) to analyze financial and textual data. We incorporate Days of Inventory (DOI) and earnings call transcripts to predict potential supply shortages. By constructing a supply chain network that considers the relationships between upstream and downstream suppliers, we aim to capture the likelihood and timing of downstream disruptions when upstream supply is unstable. To validate the model, we collect the experimental data from Taiwan Semiconductor Manufacturing Company (TSMC) spanning a five-year period from 2018 to 2022, including suppliers' supply chain relations, financial numbers and earnings call transcripts. The experiments demonstrate the effectiveness of machine learning models in forecasting supply shortages, and earnings call transcripts serve as supplementary indicators for potential shortages. As a result, this research is the first work to integrate financial figures, textual data, and supply chain relationships into TGNN, providing a solution for predicting supplier shortages in the semiconductor industry and showing potential for future applications and research.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:57:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:57:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv


Chapter 1 Introduction 1
Chapter 2 Literature Review 6
2.1 Shortage Forecasting................................... 6
2.2 Supply Chain ....................................... 8
2.3 Graph Neural Network.................................. 9
2.4 Financial Number Prediction by Earnings Call Transcript .............. 11
Chapter 3 Shortage Indicators 12
3.1 Days of Inventory..................................... 12
3.2 Text Information ..................................... 15
Chapter 4 Research Design 17
4.1 Problem Definition.................................... 18
4.2 Feature Extraction .................................... 18
4.2.1 Text Embedding................................. 19
4.2.2 Temporal Feature Generation ......................... 19
4.3 Temporal Graph Neural Network............................ 20
4.3.1 Model Architecture ............................... 21
4.3.2 Loss Function .................................. 21
Chapter 5 Experiments 23
5.1 Datasets .......................................... 23
5.2 Evaluation Metrics .................................... 24
5.3 Parameter Settings .................................... 25
5.4 Baseline Models ..................................... 25
5.5 Experiment Results.................................... 26
5.5.1 Comparison withBaseline Models ...................... 26
5.5.2 Impact of Supply Chain............................. 27
5.5.3 AblationStudy for Textual Information.................... 27
5.5.4 Impact of Time Window ............................ 28
5.5.5 Forecasting Result for Tier-1 Suppliers .................... 29
5.6 Linear Regression Analysis ............................... 30
Chapter 6 Conclusion 31
References 33
-
dc.language.isoen-
dc.title以時序圖神經網路進行半導體產業供應鏈短缺預測zh_TW
dc.titleSupply Chain Shortage Forecasting for Semiconductor Industry by Temporal Graph Neural Networken
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳孟彰;張詠淳zh_TW
dc.contributor.oralexamcommitteeMeng Chang Chen;Yung-Chun Changen
dc.subject.keyword時序圖神經網路,供應鏈短缺,半導體產業,存貨天數,深度學習,zh_TW
dc.subject.keywordtemporal graph neural network,supply chain shortage,semiconductor industry,days of inventory,deep learning,en
dc.relation.page41-
dc.identifier.doi10.6342/NTU202301990-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-01-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.8 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved