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Abstract

The semiconductor industry heavily relies on a well-functioning and efficient

supply chain due to its high cost, vertically divided supply chain, and short product

life cycles. Delays in the supply chain can lead to production stagnation and

associated financial losses. Accurately forecasting supply shortages is crucial for

semiconductor companies to adjust their production plans based on upstream supply

conditions. This master thesis proposes a supply chain shortage forecasting model

that utilizes a Temporal Graph Neural Network (TGNN) to analyze financial and

textual data. We incorporate Days of Inventory (DOI) and earnings call transcripts

to predict potential supply shortages. By constructing a supply chain network that

considers the relationships between upstream and downstream suppliers, we aim to

capture the likelihood and timing of downstream disruptions when upstream supply

is unstable. To validate the model, we collect the experimental data from Taiwan

Semiconductor Manufacturing Company (TSMC) spanning a five-year period from

2018 to 2022, including suppliers’ supply chain relations, financial numbers and

earnings call transcripts. The experiments demonstrate the effectiveness of machine

learning models in forecasting supply shortages, and earnings call transcripts serve as

supplementary indicators for potential shortages. As a result, this research is the first

iv
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v

work to integrate financial figures, textual data, and supply chain relationships into

TGNN, providing a solution for predicting supplier shortages in the semiconductor

industry and showing potential for future applications and research.

Keywords: temporal graph neural network, supply chain shortage, semiconductor

industry, days of inventory, deep learning
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Chapter 1

Introduction

The semiconductor industry is heavily reliant on a reliable and efficient supply chain. However,

the vertically divided supply chain and short product life cycle make the manufacturing process

have a lot of uncertainty (Guin et al., 2014); moreover, the long production line increases the

difficulty of in time adjustment when unexpected delays occur in the process. Any delays or

inadequacies in supply chains thus cause huge production stagnation and idling these expensive

production lines will lead to huge losses (Mönch et al., 2018; Brown et al., 2000). One main

reason for production inefficiency is the failure of manufacturers to obtain the required raw

materials and equipment from upstream suppliers in a timely manner, which is also known as

”supply shortages”. Take the recent semiconductor shortage as an example, due to the Covid-19

pandemic and the trade war, chip makers were severely impacted by supply shortages of their

upstream suppliers, leading to a significant semiconductor shortage. It affected over 169 sectors

and consumer lines such as computers, automotive, and consumer electronics (Mohammad et al.,

2022). The shortage posed a major obstacle for the semiconductor and its downstream industries

in fully utilizing their production capacity (Krolikowski and Naggert, 2021; Leibovici and Dunn,

2021). Considering the growing significance of the upstream supply chain, there is an urgent

1
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need for forecasting potential shortages of upstream suppliers to help semiconductor companies

adjust their production plans efficiently. Our study focuses on forecasting shortages by analyzing

the financial and textual information of the supply chain using graph neural networks, which is

widely adopted in various supply chain topics.

Figure 1.1: Example of the long production line of the semiconductor industry

To forecast supply shortages accurately, it is necessary to identify effective indicators that

signal their occurrence. While increased backorder or prolonged lead-time are reliable indicators

of a supply shortage, they are normally confidential and not readily available to the public.

DOI, also referred to as day’s sales of inventory, is a public metric that is closely tied to a

supplier’s supply shortages (Berk et al., 2013). It is calculated as inventory divided by cost of

goods sold (COGS) multiplied by the relevant time period. DOI provides clues of an impending

shortage before it significantly impacts downstream operations. For instance, a significant drop
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in DOI may be an indication of a forthcoming shortage. In addition to DOI, unstructured

text information of companies are also helpful to forecast supply shortages. Several studies

(Matsumoto et al., 2011; Pei, 2021) show that the earnings call transcripts released quarterly by

companies frequently reveal shortage-related information. Although there is other text information

(e.g., press releases) useful for supply shortage forecasting, many of them are not always available

because semiconductor companies tend to have low exposure. Hence, in this study, we forecast

supply shortages by exploring DOI and earnings call transcripts, both of which are readily

available and reveal shortage-related information of companies. We explore these indicators and

elaborate the relationship between them and supply shortages in Section 3.

The proposed supply shortage forecasting model is a temporal graph neural network model,

which utilizes earnings call transcripts, DOI and DOI-related statistics of suppliers in the

supply chain to forecast shortage situations of suppliers after one quarter. Specifically, for a

semiconductor manufacturer, we consider two factors to conduct supply shortage forecasting,

namely, 1) the inventory levels of its suppliers (called the tier-1 suppliers), and 2) the availability

of goods from the suppliers of the tier-1 suppliers (called the tier-2 suppliers). We examine

tier-2 suppliers because delays or shortages of tier-2 suppliers would affect tier-1 suppliers

which subsequently incur supply shortages. The chain reaction can be seen as a kind of time

shifting (Ye et al., 2022) indicating that before the inventory shortage of semiconductor equipment

manufacturers, upstream suppliers already met shortage in the previous quarter. Hence, to have

long-term planning and comprehensive shortage forecasting, potential supply delays from tier-2

suppliers need to be examined. To this end, we construct a supply chain network in which

nodes stand for the tier-1 and tier-2 suppliers and edges represent their upstream and downstream
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relationships.

Based on the supply chain graph, the temporal graph neural network (TGNN) (Zhao et al.,

2019; Zhu et al., 2021) is employed to predict supply shortages of the tier-1 suppliers. GNN is

an advanced graph-based deep learning model that derives representative embeddings of nodes

through graph connections. Studies show that GNN is capable of predicting the financial risks

and financial numbers of companies in a supply chain (e.g., (Yang et al., 2021; Ye et al., 2022)).

In addition, in the networks with upstream and downstream relationships, such as prediction of

the number of vehicles in the traffic and the supply chain of e-commerce, GNN has also been

proven to capture the timing relationship well with some adjustments (Zhao et al., 2019; Bai

et al., 2021). In terms of supply shortage forecasting, while Wu (2022) and Ye et al. (2020)

have utilized earnings call transcripts to predict supply chain risks and stock prices, they do

not consider the complete network topology and temporal information. Our GNN leverages the

features (e.g., inventory levels, earnings calls, and financial numbers) of the tier-2 suppliers to

enrich the embeddings of the tier-1 suppliers that enhance our shortage forecasting. To the best

of our knowledge, the previous works not only did not consider the supply chain relation and the

earnings call transcript data at the same time, but also seldom took advantage of the phenomenon

that the shortage of upstream suppliers may take a while to affect downstream. Our research thus

is the first work that aims to integrate unstructured text information, supply chain connections, and

temporal information into GNN for effective supply shortage forecasting. To validate the proposed

model, we collect the supplier data of Taiwan Semiconductor Manufacturing Company (TSMC), a

word-leading semiconductor company for a 5-year period (2018 to 2022). The evaluation dataset

consists of the announced quarterly financial statements and earnings call transcripts of 96 tier-1
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and tier-2 companies. The results of experiments based on the real-world dataset demonstrate that

the proposed TGNN-based model and several machine learning models are effective in forecasting

supply shortages. Moreover, the unstructured text information, that is, the earnings call transcripts,

are indicative of potential supply shortages. We summarize the contribution of this research as

follows:

1. We first utilize a temporal graph neural network along with textual data to forecast potential

supplier shortages in the upcoming quarter.

2. We investigate the relationship between Days of Inventory (DOI) and shortage situations

and utilize DOI as an indicator to predict shortages.

3. We validate the accuracy of our model using real-world data from semiconductor

companies, which demonstrates that examining the proposed features are crucial for

accurate shortage forecasting. Our findings suggest that this approach has promising

potential for future research in this field.
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Chapter 2

Literature Review

2.1 Shortage Forecasting

Shortages can be detected through various approaches. One such approach is the prediction of

backorders, where manufacturers are unable to meet delivery deadlines. In a study by Islam and

Amin (2020a), Distributed Random Forest was employed to predict backorders using inventory,

sales, forecast, and backorder decisions as features. The study revealed that transforming

numerical data into ranges, as opposed to using raw numbers, improved performance. Another

indicator of shortage is lead-time, as demonstrated in Alnahhal et al. (2021), where the lead-time

for make-to-order supply chains was forecasted. Despite the challenge of accurately predicting

lead-time due to longer production durations, traditional models such as weighted average, linear

regression, and logistic regression achieved a precision of 0.93. However, both backorders and

lead-time rely on internal company information, which is often difficult to obtain. To address

this limitation, Khare et al. (2020) employed LDA and SVM as text models to predict shortage

quantities based on social media data during natural disasters, allowing for more timely predictions

without relying solely on internal data.

6
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In the field of shortage prediction, several machine learning models leveraging time series data

have been applied. For inventory prediction, models such as ARIMA, exponential smoothing, and

the Theta model have been utilized (Petropoulos et al., 2019). In the context of forecasting oil

consumption, models such as LogR, decision trees, back propagation neural networks, and SVM

were compared, with the inclusion of Google Trends data (Yu et al., 2019). Neural Network (NN)

models, specifically designed for delivery forecasts in the semiconductor industry, were proposed

(Lingitz et al., 2018). The backorder dataset on Kaggle was addressed using a combination of

multiple machine learning models, with the imbalanced dataset problem tackled using SMOTE

(Islam and Amin, 2020b). Considering the short product life cycle and long lead time of

the semiconductor industry, deep reinforcement learning was employed for demand forecasting

(Chien et al., 2020). However, in a demand forecasting experiment, it was found that modern deep

learning models did not significantly outperform traditional machine learning models (Carbonneau

et al., 2008). While recurrent neural networks (RNN) performed best, the margin over SVM was

minimal. This suggests that for less complex problems, simple deep learning models may not

fully leverage their advantages. Nonetheless, in a counterexample, a combination of convolutional

neural networks (CNN) and long short-term memory (LSTM) was applied to simultaneously

capture spatial and temporal information for inventory forecasting (Xue et al., 2019). Through

algorithmic parameter optimization, this model achieved promising results, affirming the potential

of deep learning in addressing shortage forecasting problems . Consequently, we aim to investigate

the performance of Temporal Graph Neural Networks (TGNN) by incorporating text, time series,

and supply chain networks, encompassing a wider range of data types than previous studies.
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2.2 Supply Chain

As highlighted in a comprehensive survey (Rahman et al., 2022), extensive research on the supply

chain has been conducted. This research encompasses four key perspectives: preparedness,

response, recovery, and integrated strategies, which are further categorized into seven domains:

macro, supply, demand, manufacturing, information, and transportation. The information-level

research emphasizes the significance of inventory within the supply chain (Soni et al., 2014;

Pereira et al., 2014; Siva Kumar and Anbanandam, 2020; Namdar et al., 2021). Additionally, the

exchange of information between supply chains is recognized as an effective strategy for managing

disruptions (Rajesh, 2019). However, the collated papers reveal a limited number of studies that

employ quantitative models to predict shortages in supply chain networks. Only one study used

grey prediction to forecast five indicators of supply chain resilience: flexibility, responsiveness,

quality, productivity, and accessibility (Rajesh, 2016).

In recent years, the application of deep learning in the supply chain has gained prominence.

For instance, deep learning has been employed to predict stock prices (Xue et al., 2019; Rodriguez,

2021) and uncover hidden links within the supply chain (Gopal and Chang, 2021). The Graph

Attention Network (GAT) with pairwise logistic loss was utilized to generate negative samples,

enhancing the prediction of potential supply relationships (Islam and Amin, 2020a). Furthermore,

research has emphasized the interpretability of predictions in addition to uncovering hidden links

(Kosasih and Brintrup, 2022). Graph Neural Networks (GNNs) have also been leveraged to

predict risks associated with companies in the supply chain, with a particular focus on small

and medium-sized enterprises. This research highlights the ability to assess a company’s risk by

understanding its upstream and downstream connections, even in the absence of comprehensive
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company information (Yang et al., 2021). Moreover, studies have simultaneously predicted

hidden links and risks between companies within the supply chain, incorporating knowledge

graph reasoning for enhanced explainability (Kosasih et al., 2022). Industry classification of

companies has proven helpful in comprehensively understanding the supply chain, including

unlisted companies that do not provide public information (Wu et al., 2021). In the context of

topics related to shortage forecasting, one study employed Artificial Neural Networks (ANN) with

a Genetic Algorithm to predict lead time while considering path optimization issues (Dosdoğru

et al., 2021). However, to the best of our knowledge, no research has yet explored the combination

of supply chain analysis and GNNs for shortage prediction, presenting an unexplored area of

investigation.

2.3 Graph Neural Network

The concept of Graph Neural Network (GNN) was initially introduced by Scarselli et al. (2008),

and since then, several general-purpose models have been developed, including GCN (Bruna et al.,

2013; Defferrard et al., 2016), GraphSage (Hamilton et al., 2017), and GAT (Veličković et al.,

2017) which incorporates the concept of attention (Vaswani et al., 2017) into GNNs. GNNs have

demonstrated exceptional performance across various domains, such as recommendation systems

(Wu et al., 2019) and anomaly detection (Wang et al., 2021b).

While most GNN research has focused on static graphs, the dynamic nature of supply chain

companies’ interactions over time necessitates the consideration of temporal aspects. Although

dynamic graphs have been explored in some studies (Wang et al., 2021a), this research primarily

focuses on the semiconductor supply chain, which undergoes minimal changes over a few years.
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Therefore, our attention is directed towards Temporal GNNs, which integrate time-sequential

features within a static network structure.

Before the emergence of GCN, RNNs and spatio-temporal graphs were combined to develop

Structural-RNN for predicting character actions in films (Jain et al., 2016). Subsequently,

Temporal GCN gained popularity in traffic prediction, exemplified by T-GCN (Zhao et al., 2019)

and AST-GCN (Zhu et al., 2021). By representing the traffic road network as a graph and

transforming junctions into graph embeddings using GCN, the model incorporates RNN-related

components, such as GRU, to predict timing by considering the upstream traffic’s influence on the

downstream over time. Enhanced models, like A3T-GCN, further improved performance through

the use of attention mechanisms (Bai et al., 2021). In the context of supply chain research with

Temporal GNNs, one study focused on predicting the next day’s stock prices based on the stock

prices of the target company, as well as its upstream and downstream companies (Rodriguez,

2021). Another study leveraged link prediction to construct the supply chain network, considering

spatial and temporal information to predict the risk of small and medium-sized enterprises (Yang

et al., 2021). Additionally, a study forecasted the gross merchandise value of companies in

the supply chain using three modules: Feature Fusion Layer, Temporal Embedding Layer, and

ITA-GCN (Ye et al., 2022). The Temporal Embedding Layer employed convolutional units

with different kernel sizes to capture various time periods’ effects. Furthermore, ITA-GCN

enhanced the attention mechanism through Convolution Attention Units, enabling better inter- and

intra-attention between connected nodes. Experimental results demonstrated the model’s ability to

capture both local and global temporal shifts, incorporating information from the company itself

and its neighboring nodes.
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2.4 Financial Number Prediction by Earnings Call Transcript

In our research, we investigated the use of earnings call transcripts from various companies as data

to predict shortages. Earnings call transcripts contain valuable information that can be leveraged

for analysis. Beyond textual content, these transcripts also provide potential indicators. For

instance, during periods of poor company performance, there tends to be a shift in language usage,

with fewer financial-related terms and a greater focus on future-oriented terms (Matsumoto et al.,

2011; Pei, 2021). The application of earnings call transcripts for forecasting has been extensively

studied in various financial domains, particularly in stock price prediction (Lingitz et al., 2018)

and volatility forecasting (Qin and Yang, 2019a). Some studies have utilized BERT (Devlin et al.,

2018) as a text model and specifically extracted numerical information from the text to predict

stock price volatility following earnings calls (Chen et al., 2021). Corporate risk prediction is

another common area of investigation. These studies have employed diverse text and vocal models

such as LSTM with Attention, CNN-Text (Yoon, 2014), MDRM (Qin and Yang, 2019b) and

HTML (Yang et al., 2020). Notably, they have found strong correlations between the sentiment

of terms in earnings call transcripts and future indices, particularly negative correlations ranging

from -0.45 to -0.5 (Li et al., 2020). Furthermore, a Multi-Round Q&A Attention Bi-LSTM model

has been proposed to predict company risk (Ye et al., 2020). This model employs Bi-LSTM to

convert text into embeddings for downstream tasks during the presentation part of earnings calls.

For the Q&A section, Reinforcement Learning is used as a sentence selector to filter out less

informative sentences (e.g., ”Thank you”). The model then generates attention between questions

and answers, producing question and answer features.
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Chapter 3

Shortage Indicators

The goal of our shortage forecast is to predict potential supplier shortages that will occur in the

upcoming quarters using financial data and earnings call transcripts. Intuitively, the forecast can be

defined as a binary classification problem (i.e., to predict whether a supplier will create a shortage

or not). However, due to the lack of reliable shortage labels for suppliers, we consider it as a

regression problem and predict upcoming DOI’s of suppliers. Below, we first explain supplier

shortage and discuss how DOI’s are related to shortage forecasting. Next, we show why text

information are useful for DOI predictions.

3.1 Days of Inventory

There are two typical types of supply shortages, namely, (A) systematic shortages owing to

surpassing demands over supply, and (B) sudden shortages due to the lack of critical components.

To elucidate the shortage type A and its relation with DOI, we start with Schumpeter’s market cycle

(Kitchin, 1923) which indicates that the cycles of markets are normally short and their lengths are

around 40 months. Although the cycle lengths observed by Schumpeter in 1923 would not be

identical to those of modern markets, e.g., semiconductor industry where the production length

12
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Figure 3.1: Four stages of the inventory cycle

can extend from six months to a year, the observed cycle is still useful to explain important market

phenomena in the recent years. Four stages in the cycle was proposed to elucidate the Lehman

wave observed in 2009, referring to an economy-wide fluctuation in production and economic

activity occurring over a wavelength of 12 to 18 months (Steen, 2009; Peels et al., 2009). It is

driven by a sudden and significant disruption within the economic system.

As illustrated in Figure 3.1 a market cycle consists of four stages, namely, active destocking,

reactive destocking, active restocking, and reactive restocking. During reactive destocking,

demands surpass inventory capacity. The upsurging demands results in inadequate production and

serves as a primary catalyst for systematic shortages. Figure 3.2 shows a real-world example of

the type A shortage (i.e., the systematic shortage). In this figure, the cost of goods sold (COGS) is

deemed to be the demands and inventory still reflects inventory capacity. DOI (Days of Inventory)

is a calculated metric that combines both values, providing a simpler measure of supply situation.

From Q2 2020 to Q2 2021, Applied Materials (AMAT) was incapable of aligning inventory with

the escalating COGS that led to a substantial decline in DOI. Consequently, the company suffered
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a systematic shortage during the period.

Figure 3.2: AMAT’s DOI and related financial numbers

Figure 3.3: LRCX’s DOI and related financial numbers

The shortage type B is caused by abnormal market conditions that cannot be accounted

for by the market cycle. In the semiconductor industry, production often involves assembling

diverse raw materials from various upstream suppliers. The absence of a particular raw material

inevitably results in production failures and would produce partly manufactured products that

stock inventory. However, because raw materials are often pre-ordered, the partly manufactured

products keep accumulating that makes inventory levels rise. It is worth noting that the trends

in DOI, inventory, and COGS for shortage type B are similar to those observed during reactive

restocking in the market cycle. However, in this particular case, it does not indicate an actual

shortage. The distinction lies in the fact that, in this case, the demand is typically weak, whereas
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in shortage type B, the demand is usually stable and strong. Figure 3.3 demonstrates an intriguing

case of shortage type B involving Lam Research (LRCX) commencing from Q3 2021. During the

period, Lam Research endured the unavailability of critical components that hindered their ability

to meet the robust market demands. This accumulation occurs despite a robust market demand.

As a result, its inventory increased while COGS remained relatively unchanged. This discrepancy

leads to a significant rise in the DOI as shown in the figure.

In summary, when DOI abnormalities occur, they are often accompanied by one of the two

supply shortage types. Moreover, based on domain experts’ knowledge, for industries like

semiconductors that have long lead times to produce and deliver their components or materials,

there is usually a 1-to-2 quarter delay from the time when the upstream DOI problems impact

their downstream. The above discussion and examples indicate DOI would be a useful leading

indicator for supply shortage forecasting and an important criterion for judging whether a company

is experiencing shortage. Therefore, in this research, we use DOI as a predictive feature to forecast

the upcoming DOIs for effective supply shortage detections.

3.2 Text Information

As mentioned earlier, whether an abnormal DOI indicates an actual shortage situation depends

on a comprehensive assessment of the market and the specific company’s circumstances. For

example, in Q2 2021, the earnings call transcripts of Applied Materials mentioned that “Current

capacity shortfalls in some areas of the market show the highly efficient, ‘just-in-time’ supply

chains that have served the semiconductor industry well for the past two decades, may not

be the most effective strategy going forward.” The company soon was struck by a significant
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drop in DOI that quarter, and then experienced backorders and was unable to fulfill downstream

orders.” Subsequently, the company witnessed a substantial and consistent decline in DOI across

consecutive quarters, unequivocally indicating a persistent and systematic shortage.

Regarding sudden shortages, in Lam Research’s Q4 2021 earnings call, it was stated, “In

the December quarter, unexpected shipment delays, primarily for components from a critical

supplier, surfaced in the last two weeks of the quarter, leaving us with insufficient time for full

recovery despite the diligent efforts of our supplier and our global operations team. The resulting

shipment delays caused revenues to come in below the midpoint of our guidance range.” This

instance highlighted that the shortage was not solely due to production issues but also a lack

of critical components and shipment delays, which were the primary reasons for the increased

DOI. Through these examples, it becomes evident that there was a genuine shortage during those

quarters, rather than the company’s financial adjustments. Thus, textual information plays a crucial

role in supporting shortage forecasting data.
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Chapter 4

Research Design

Figure 4.1: The model structure for shortage forecast

Figure 4.1 shows the structure of our shortage forecasting model extended from T-GCN (Yu et al.,

2017) and AST-GCN Zhu et al. (2021). The model follows a process starting with problem

definition and proceeds as follows: data processing to generate input embeddings, applying Graph

Convolutional Networks (GCN) to generate graph embeddings, utilizing the graph embeddings as

input to a Gated Recurrent Unit (GRU) to generate embeddings for each supplier at a given time

point, and finally, making the final prediction through a dense layer.

17
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4.1 Problem Definition

Below, we formally define the DOI prediction task using supply chain networks. Let G = (V,E)
be a supply chain network, where {V = v1,v2, ...,vn} are nodes representing individual suppliers,

and n is the total number of suppliers. E = {< vi,v j >} is the set of edges that represent the supply

relationships. An edge < vi,v j > indicates that vi is an upstream supplier of v j. Note that the supply

relationships are very sparse, therefore we categorize the product characteristics of V into ten types

and establish edges between suppliers of the same type to enhance the information in G. Last, we

use the adjacency matrix A to represent the network G, in which Ai, j is 1 if suppliers vi and v j have

a supply relationship or they are with the same product type

For each tier-1 supplier vi, we examine its previous DOI’s and features including the text

information of its earnings call transcripts and financial numbers to predict the upcoming DOI’s.

Specifically, let vector x
t

i
denote the DOI of supplier vi at time t, and vector k

t

i
comprises the

features of vi at time t. We train a GCN-based function f that leverages the historical data (X =<
x

1
i
,x2

i
, .. . . ,xt

i
>,K =< k

1
i
,k2

i
, . . . ,kt

i
>) under the supply relationships in G to predict the upcoming

DOI’s of vi as follows:

x
t+1
i
= f (X ,K�G) (4.1)

Next, we detail our prediction model and the training process.

4.2 Feature Extraction

In this research, we examine two types of attributes: text attributes and financial attributes to

predict the DOI’s of suppliers.
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4.2.1 Text Embedding

To extract text information of suppliers, we count shortage-related keywords and the

corresponding sentiment scores in each earnings call transcripts. We evaluate the text features

because supply chain information only take limited space in earnings calls. Hence, fine tuning

a pre-trained model to obtain text embeddings of whole earnings call transcripts may introduce

bias. Moreover, the length of the text embeddings are normally long, and they will dominate the

other features and cause our shortage forecasting model to overlook the financial numbers related

to the DOI. Therefore, we adopt a more straightforward approach by counting the occurrence

of 100 shortage-related keywords provided by domain experts (e.g. component, pandemic,

congestion......) and their sentiment scores computed through an FinBERT (Araci, 2019) across

all segments where the keywords occur. Considering the length of the features, we perform

summation on the occurrence of 100 keywords and three types of sentiment scores to form

D ∈ R
n×(w∗t), a collection of w different text attributes D1,D2, . . . ,Dw (in this case, w = 4).

4.2.2 Temporal Feature Generation

In addition to DOI, we select meaningful financial numbers for our shortage prediction task. Here,

we choose inventory and COGS, which are highly associated with DOI, to form our financial

attributes: F ∈ R
n×(z∗t) - a collection of z different financial attributes F1,F2, . . . ,Fz. Then, we

concatenate DOI, text attributes, and financial attributes to form:

E
t = [Xt ,Dt

1,D
t

2, . . .D
t

w
,Ft

1 ,F
t

2 , . . .F
t

z
] (4.2)

, where E
t ∈ R

n×(1+w+z) as the features at time t.
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4.3 Temporal Graph Neural Network

To leverage the inherent graph structure of supply chains, we employ a graph-based approach.

In addition, given the persistent nature of time shifting and shortages from tier-2 to tier-1,

temporal information is critical as well. Therefore, we require a model that comprehensively

integrates spatial and temporal information of data. We use the AST-GCN model (Zhu et al.,

2021) as our model because its theoretical foundations align well with our scenario. Specifically,

AST-GCN combines Graph Convolutional Networks (GCNs) graph embedding model with GRU

to effectively capture temporal information and achieve accurate predictions. The mathematical

foundation of GCN can be represented as follows: Let s represents the activation function,

Ã = A+ I denotes the adjacency matrix with self-loops, D̃ symbolizes the corresponding degree

matrix, Wl represents the weight matrix of the l-th convolutional layer, yl represents the output

representation, and y0 = X , in our case, X = E
1. . . t .

yl+1 = s(D̃− 1
2 ÃD̃

− 1
2 ylWl) (4.3)

The GRU model can be understood as a composition of update gates and reset gates. It takes

into account the input node feature of at time t−1 ∶ xt−1, and the hidden states at time t−k, ...,t−1,t ∶
ht−k, . . . ,ht−1,ht to determine the candidate hidden state ct . The reset gate, rt , combines the state of

the previous stage ht−1 with current information xt using the sigmoid activation function (s ) and

tanh to get the candidate hidden state ct . The update gate, ut , plays a pivotal role in determining the

extent to which the previous state ht−1 should be disregarded and how much of the new information

from ct should be integrated, ultimately leading to the formation of the final hidden state ht . In our

case, the input xt−1 is the output of the GCN and the output ht will used to predict the final y.
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4.3.1 Model Architecture

As shown in the Figure 4.1, various types of features are concatenated to form a comprehensive

vector E, which serves as the input for forecasting the final result y.

ŷ = f (A,X ,E) (4.4)

The basic process is to feed the f eature into GCN to generate node embedding, then put the

output into GRU to obtain the hidden state for that time, and finally, predict the result y.

ŷ = f (A,X ,E) (4.5)

ut = s(Wu ⋅ [gc(Et ,A),ht−1]+bu) (4.6)

rt = s(Wr ⋅ [gc(Et ,A),ht−1]+br) (4.7)

ct = tanh(Wc ⋅ [gc(Et ,A),(rt ,ht−1)]+bc) (4.8)

ht = ut ∗ht−1+(1−ut)∗ct (4.9)

where gc(⋅) is the graph convolution operation.

4.3.2 Loss Function

Although we focus more on the prediction results of tier-1 suppliers, for model training, we predict

for every tier-1 and tier-2 suppliers. We use yt and ŷt to denote the real DOI and the predicted DOI,

respectively. The primary goal of the loss function is to minimize the prediction error associated

with the DOI for all tier-1 and tier-2 suppliers.

Loss = �yt − ŷt�+lLreg (4.10)
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In this context, yt represents the ground truth and ŷt corresponds to the prediction. The

equation incorporates the term Lreg as a regularization term to mitigate overfitting, with l serving

as a hyperparameter that governs the extent of its influence.
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Experiments

5.1 Datasets

We collected real-world data from Q1 2018 to Q3 2022 for our performance evaluations. The

dataset consists of 4 tier-1 semiconductor equipment suppliers listed in the United States and 92

tier-2 suppliers. To standardize the financial quarters across companies with varying definitions,

we aligned the months specified in the financial reports by considering May to July as Q1, June

to August as Q2, and so forth. The supply relationships were primarily based on the Bloomberg

supply chain database, which gathers data from companies’ financial reports and various public

sources.

The collected data were split into training and testing sets. The training data includes the 2nd

to 14th quarters, while the testing data comprises the 15th to 19th quarters. To reflect real-world

scenarios, we set the time window at 2 in the experiment. Here, the time window specifies the

(quarter) length of historical features used to predict the DOI of the next quarter. The predicted

DOIs then are evaluated by the following evaluation metrics to show the shortage prediction

performance.

23
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Table 5.1: Basic statistics of the supply chain network

Category Metric Value

Network

the number of nodes 96 (T1:4, T2:92)

the number of edges 338

Graph Density 0.037

Node

Max degree 24

Min degree 1

Average degree 3.52

Table 5.2: Basic statistics of each features

DOI COGS Inventory Positive Negative Neutral
Keyword

counts

Mean 85.05 1,025M 731M 8.0 2.75 8.51 58.62

Max 3,925 19,128M 21,092M 58.98 33.0 64.53 228.0

Mean -78.43 -167M 0 0 0 0 0

5.2 Evaluation Metrics

To assess the model’s performance, we utilize the following widely recognized evaluation metrics:

(1) Root Mean Square Error (RMSE)

RMSE computes the root mean square difference between the predicted and the real DOIs. The

smaller the value the better shortage forecasting performance.

RMSE =
����1

n

n�
i=1
(yi− ŷi)2 (5.1)

(2) Mean Absolute Error (MAE)

MAE also measures the difference between the predicted and real DOIs. However, compared to

RMSE, MAE is more sensitive to extreme values.

MAE = 1
n

n�
i=1
�yi− ŷi� (5.2)

(3) R-Squared
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R-Squared, also known as the coefficient of determination, measures the proportion of the variance

in the dependent variable that can be predicted from the independent variables.

R
2 = 1−∑i(yi− ŷi)2∑i(yi− ȳ)2 (5.3)

(4) Adjusted R-Squared (adj. R
2)

The adjusted R-Squared is a statistical measure that evaluates the goodness-of-fit of a regression

model while considering the number of predictors (variables) used. It is an adjusted version of the

regular R-squared that penalizes the inclusion of unnecessary predictors.

Ad justed R
2 = 1− (1−R

2)(n−1)
n−k−1

(5.4)

5.3 Parameter Settings

The model’s hyperparameters primarily consist of the learning rate, training epochs, and the

number of hidden units for the graph embedding in GCN (equivalent to the length of GRU hidden

units). These hyperparameters were manually set to 0.001, 200, and 64, respectively, as suggested

by previous studies and experimental observations. As for the optimizer, we employed Adam, also

based on previous research (Zhu et al., 2021).

5.4 Baseline Models

We conduct a comparative analysis of the proposed model (TGCN) against the following methods:

(1) Linear regression (LR) (Weisberg, 2005), (2) Support vector regression (SVR) (Smola and

Schölkopf, 2004), (3) Random Forest (RF) (Segal, 2004), (4) XGBoost (Brownlee, 2016), and (5)

Graph Convolutional Network (GCN) (Defferrard et al., 2016). To ensure fair comparisons, all
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the methods were implemented using public code and packages. Their hyperparameters were set

as suggested by the code developers.

5.5 Experiment Results

5.5.1 Comparison with Baseline Models

Table 5.3: Performance comparison of different models for shortage forecast

Model RMSE MAE R
2 adj. R

2

Linear Regression 21.88 14.53 0.88 0.88

SVR 43.99 29.7 0.54 0.52

Random Forest 22.61 14.67 0.87 0.87

XGBoost 25.39 18.0 0.82 0.82

GCN 44.52 31.32 0.51 0.35

TGCN 43.51 31.47 0.54 0.38

In Table 5.1, we primarily investigate the compared models based on their RMSE results. Overall,

Linear regression and Random Forest achieved RMSE values of 21.88 and 22.61, respectively,

indicating good predictive performance. Surprisingly, graph models (i.e., GCN and TGCN) that

utilized the supply chain network were not superior, suggesting that the dataset lacked sufficient

information for the models to learn the network topology weights, and the inclusion of data from

unrelated companies had a negative impact.

To further discuss the problem of the data insufficiency and the effects of textual and numerical

supply chain information, we evaluate the models in terms of four perspectives: impact of supply

chain topology, influence of textual information, effect of time window length, and prediction

performance for tier-1 suppliers.
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Table 5.4: Performance comparison of different graph-based models with or without network

Model RMSE MAE R
2 adj. R

2

GCN 44.52 31.32 0.51 0.35

TGCN 43.51 31.47 0.54 0.38

GCN w/ identity matrix 20.83 14.07 0.89 0.86

TGCN w/ identity matrix 27.09 18.16 0.83 0.74

5.5.2 Impact of Supply Chain

To examine the benefit of supply chain topology in shortage prediction, we compare the

GCN-based models with and without using the supply chain network. When without using

the network, we input the GCN model an identity matrix that implies no supply relationship

between the companies, The RMSE value of GCN without the network is 20.83, and the value

is comparable to several traditional models shown in Table 3.1, indicating that advanced neural

networks still have potential. However, the current dataset was insufficient to train the GNN

model, and TGCN, which is basically a neural network with an additional GRU layer, resulted in

worse performance, indicating that the existing data and task were not suitable for overly complex

models.

5.5.3 Ablation Study for Textual Information

Out of our expectation, the inclusion of textual data does not lead to significant improvement. It

slightly reduces the RMSE and increases the adjusted R-squared for Linear regression, Random

Forest, and XGBoost. The results show that domain-specific textual information does contribute to

shortage forecasting. When using sentiment analysis or keyword count alone, there was a marginal

improvement, but the combination of both yielded better results.
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Table 5.5: Performance comparison of different models with different features

Feature Model RMSE MAE R
2 adj. R

2

7

(all features)

Linear Regression 20.68 13.79 0.9 0.8

SVR 43.41 43.41 0.58 0.58

Random Forest 24.56 24.56 0.85 0.85

XGBoost 27.31 27.31 0.82 0.81

GCN w/ identity matrix 20.99 14.40 0.89 0.86

TGCN w/ identity matrix 21.54 14.99 0.89 0.85

4

(w/ out text

sentiments)

Linear Regression 20.61 13.81 0.9 0.89

SVR 36.84 23.43 0.67 0.66

Random Forest 26.21 16.89 0.83 0.83

XGBoost 30.4 18.91 0.77 0.77

GCN w/ identity matrix 20.85 14.10 0.89 0.86

TGCN w/ identity matrix 21.33 14.61 0.89 0.85

3

(w/ out text

sentiments

and keyword

counts)

Linear Regression 20.91 14.1 0.89 0.89

SVR 32.48 19.2 0.74 0.74

Random Forest 26.71 17.14 0.82 0.82

XGBoost 28.55 17.83 0.8 0.8

GCN w/ identity matrix 20.99 14.40 0.89 0.86

TGCN w/ identity matrix 21.54 14.99 0.89 0.85

5.5.4 Impact of Time Window

The time window specifies the length of historical data (i.e., features) used to forecast DOIs for

the next quarter. To avoid short training data due to lengthening the time window, we kept the

training data consistent across all experiments except for the time window. The models performed

better with shorter time windows, suggesting that, in theory, the temporal information does not

contribute significantly to shortage forecasting. However, the insufficient training data may also

be an affecting factor.
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Table 5.6: Performance Comparison of Different Models with Different Time Windows

Time

window
Model RMSE MAE R

2 adj. R
2

3

Linear Regression 22.86 14.59 0.87 0.86

SVR 42.7 28.62 0.55 0.53

Random Forest 22.21 14.49 0.88 0.87

XGBoost 27.29 17.62 0.82 0.81

GCN w/ identity matrix 22.92 14.61 0.88 0.81

TGCN w/ identity matrix 36.58 22.47 0.68 0.53

2

Linear Regression 21.88 14.94 0.88 0.88

SVR 43.99 30.35 0.53 0.51

Random Forest 22.61 14.59 0.87 0.87

XGBoost 25.39 16.92 0.84 0.84

GCN w/ identity matrix 21.88 14.53 0.88 0.88

TGCN w/ identity matrix 43.99 29.7 0.54 0.52

1

Linear Regression 20.76 13.97 0.89 0.89

SVR 42.9 29.41 0.55 0.54

Random Forest 24.26 15.86 0.86 0.85

XGBoost 27.2 17.86 0.82 0.82

GCN w/ identity matrix 20.78 14.0 0.89 0.86

TGCN w/ identity matrix 21.31 14.55 0.89 0.85

5.5.5 Forecasting Result for Tier-1 Suppliers

Table 5.7: Performance comparison of different models for tier-1 shortage forecast

Model RMSE MAE R
2 adj. R

2

Linear Regression 20.66 13.77 0.9 0.89

SVR 41.21 27.86 0.58 0.58

Random Forest 23.82 15.57 0.86 0.86

XGBoost 27.31 18.28 0.82 0.81

GCN w/ identity matrix 17.49 12.61 0.77 1.04

TGCN w/ identity matrix 22.48 17.73 0.57 1.06

Last, we study the prediction performance on the tier-1 suppliers. In our dataset, there are four

tier-1 suppliers. The results showed in Table 5.5 indicate that the models are superior for the
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shortage prediction on the tier-1 suppliers. This is likely due to the fact that among other suppliers,

there are companies such as energy companies that experience significant fluctuations in DOI due

to seasonal variations or special financial operations, while tier-1 suppliers are comparatively more

stable, while tier-1 suppliers are comparatively more stable.

5.6 Linear Regression Analysis

Table 5.8: The result of linear regression analysis on each feature

Feature Coefficient Standard Error T value P value

Constant 0.0406 0.005 7.896 0.000

DOI 0.858 0.015 57.190 0.000

Inventory 0.0451 0.025 1.777 0.076

COGS -0.0582 0.026 -2.207 0.027

Positive -0.0042 0.014 -0.301 0.763

Negative 0.0083 0.016 0.532 0.595

Neutral 0.0185 0.018 1.008 0.314

Keyword

counts
0.0091 0.015 0.587 0.557

Due to the good overall performance and interpretability of the Linear Regression model, we

investigate the influence of each feature on it. As shown in Table 5.6, DOI, COGS, and inventory

demonstrated significant influence on the shortage prediction task, and their coefficients aligned

with the expected direction based on the DOI formula. While the p-values for textual features were

relatively high, the neutral and negative sentiment showed an increase in DOI, indicating that, for

most companies’ operations, a rise in DOI is generally associated with negative aspects. Overall,

the coefficients aligned with expectations.



ϊϕϏͧкйͨпмнлͿΗΝΞлйлмйкттй

Chapter 6

Conclusion

This study first attempted the use of modern machine learning models to predict semiconductor

supply chain shortages. It proposed the utilization of Days of Inventory and textual data as shortage

indicators, with the support of supply chain networks for prediction. The findings were validated

and experimented with real supply chain scenarios. The results indicated that Days of Inventory

was effective for prediction, and textual data also demonstrated certain utility. However, the

performance of utilizing a temporal graph neural network with the supply chain network was

inferior to traditional models such as linear regression. This could be attributed to the insufficient

data available for the model to learn supply chain network-related information. We believe that

with an extended time frame and a larger pool of suppliers, we would be able to further assess

and validate the model’s performance. In order to enhance this research, future developments can

focus on the following aspects:

1. Experimentation on larger and more comprehensive supply chains: Currently, the

duration and quantity of companies in the study were limited, and the supply chain itself

only included US-based suppliers. However, as the semiconductor industry operates on a

31
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global supply chain, it is crucial to incorporate suppliers from other regions such as Japan,

Taiwan, and South Korea.

2. Exploration of advanced text data embedding methods: The current methods were

constrained by the small dataset, preventing the use of complex and lengthy models. It

is believed that employing more advanced techniques like BERT or even incorporating

features generated by large-scale language models (LLM) could enhance the analysis of

textual data.

3. In-depth research on graph-related models and methods: Theoretically, supply chains

are suitable for graph structures. While the current study did not yield successful results,

there are still opportunities for further exploration by leveraging larger datasets or employing

approaches that can adapt to smaller data sizes.

4. Engaging in further discussions with domain experts is crucial: Close collaboration

with real business users is essential to ensure the practicality and usefulness of the results.

For instance, the current evaluation metric we employed is based on a previous study that

focuses on the precision of the model. However, from the perspective of business users, the

accuracy of the predicted direction of the DOI holds greater significance, which should be

given more consideration in future research endeavors.
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