請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88498完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛宇甯 | zh_TW |
| dc.contributor.advisor | Louis Ge | en |
| dc.contributor.author | 王昊擎 | zh_TW |
| dc.contributor.author | Hao-Ching Wang | en |
| dc.date.accessioned | 2023-08-15T16:34:19Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-28 | - |
| dc.identifier.citation | Arias, A. (1970). Measure of earthquake intensity, Massachusetts Inst. of Tech. Cambridge. Univ. of Chile, Santiago de Chile.
Castiglia, M., de Magistris, F. S., & Koseki, J. (2019). Uplift of buried pipelines in liquefiable soils using shaking table apparatus Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions (pp. 1638-1646): CRC Press. Chian, & Madabhushi. (2012). Effect of buried depth and diameter on uplift of underground structures in liquefied soils. Soil Dynamics and Earthquake Engineering, 41, 181-190. Chian, Tokimatsu, K., & Madabhushi, S. P. G. (2014). Soil liquefaction–induced uplift of underground structures: physical and numerical modeling. Journal of Geotechnical and Geoenvironmental Engineering, 140(10), 04014057. Council, N. R. (1930). Liquefaction of soils during earthquakes. National Academy Press, Washington, DC (1985),p.240. Ecemis, N., Valizadeh, H., & Karaman, M. (2021). Sand-granulated rubber mixture to prevent liquefaction-induced uplift of buried pipes: a shaking table study. Bulletin of Earthquake Engineering, 19, 2817-2838. Huang, B., Liu, J., Lin, P., et al. (2014). Uplifting behavior of shallow buried pipe in liquefiable soil by dynamic centrifuge test. The Scientific World Journal, 2014. Iai, S. (1989). Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field. Soils and Foundations, 29(1), 105-118. Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique, 43(3), 351-451. Jafarzadeh, F., FARAHI, J. H., & ABAZARI, T. E. (2010). Investigating dynamic response of a buried pipeline in sandy soil layer by 1g shaking table test. Kang, G.-C., Tobita, T., Iai, S., et al. (2013). Centrifuge modeling and mitigation of manhole uplift due to liquefaction. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 458-469. Ko, Y. Y., Tsai, T. Y., & Jheng, K. Y. (2023). Full‐scale shaking table tests on soil liquefaction‐induced uplift of buried pipelines for buildings. Earthquake Engineering & Structural Dynamics, 52(5), 1486-1510. Kosekt, J., Matsuo, O., & Koga, Y. (1997). Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake. Soils and Foundations, 37(1), 97-108. Langhaar, H. L. (1951). Dimensional analysis and theory of models. Wiley. Ling, H. I., Sun, L., Liu, H., et al. (2008). Finite element analysis of pipe buried in saturated soil deposit subject to earthquake loading. Journal of earthquake and Tsunami, 2(01), 1-17. Lombardi, D., Bhattacharya, S., Scarpa, F., et al. (2015). Dynamic response of a geotechnical rigid model container with absorbing boundaries. Soil Dynamics and Earthquake Engineering, 69, 46-56. Meymand, P. J. (1998). Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay. University of California, Berkeley. Nokande, S., Jafarian, Y., & Haddad, A. (2023). Shaking table tests on the liquefaction-induced uplift displacement of circular tunnel structure. Underground Space, 10, 182-198. Obermeier, S. F. (1996). Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, 44(1-4), 1-76. Otsubo, M., Towhata, I., Hayashida, T., et al. (2016). Shaking table tests on liquefaction mitigation of embedded lifelines by backfilling with recycled materials. Soils and Foundations, 56(3), 365-378. Otsubo, M., Towhata, I., Hayashida, T., et al. (2016). Shaking table tests on mitigation of liquefaction vulnerability for existing embedded lifelines. Soils and Foundations, 56(3), 348-364. Seed, H. B. (1976). Evaluation of soil liquefaction effects on level ground during earthquakes. Liquefaction Problems in Geotech. Eng., ASCE Annual Convention and Exposition, held at Philadelphia (1976), 1-104. Shimamura, K., Hamada, M., Yasuda, S., et al. (2000). Experimental and analytical study of the floatation of buried gas steel pipe due to liquefaction. Proc. 12 WCEE. Auckland: New Zealand, 1385. Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John wiley & sons. Tobita, T., Kang, G.-C., & Iai, S. (2011). Centrifuge modeling on manhole uplift in a liquefied trench. Soils and Foundations, 51(6), 1091-1102. Valizadeh, H., & Ecemis, N. (2022). Soil liquefaction-induced uplift of buried pipes in sand-granulated-rubber mixture: Numerical modeling. Transportation Geotechnics, 33, 100719. White, D., Take, W., & Bolton, M. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53(7), 619-631. Williams, E., Byrne, B., & Blakeborough, A. (2013). Pipe uplift in saturated sand: rate and density effects. Geotechnique, 63(11), 946-956. Yan, K., Zhang, J., Wang, Z., et al. (2018). Seismic responses of deep buried pipeline under non-uniform excitations from large scale shaking table test. Soil Dynamics and Earthquake Engineering, 113, 180-192. Youd, T. L. (1973). Liquefaction, flow, and associated ground failure (2330-5703). Youd, T. L. (1984). Geologic effects-liquefaction and associated ground failure. Proceedings of the Geologic and Hydraulic Hazards Training Program, 210-232. Zeng, X., & Schofield, A. (1996). Design and performance of an equivalent-shear-beam container for earthquake centrifuge modelling. Geotechnique, 46(1), 83-102. 行政院內政部營建署(2020),「公共設施管線資料標準」,台灣。 陳正興、陳家漢(2014),「地震引致的土壤液化與側潰現象」﹑科學發展期刊,第498期,第12-17頁,台灣。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88498 | - |
| dc.description.abstract | 臺灣位於環太平洋地震帶,地震頻繁發生。由於地震振動,飽和的砂土可能因超額孔隙水壓力的產生,砂土強度降低導致土壤液化的發生。土壤液化發生時,建築物下沉、地層下陷、噴砂、地下維生管線及結構物上浮或破壞等災害常伴隨著土壤液化發生。本研究利用剛性盒於1g 振動台上進行一系列的縮尺模型試驗,以研究土壤液化發生期間的土壤運動行為、地下管線的垂直位移量以及地表沉陷量,並探究其相關機制。剛性盒的長、寬、高尺寸分別為121、35及35.5公分,並於長邊開設了一個壓克力透明窗口,透過攝影機記錄,分析試驗期間管線及土壤的運動行為趨勢。本研究所使用的試驗材料為石英矽砂,其統一土壤分類為不良及配砂土 (SP),管線模型為高密度聚乙烯 (HDPE) 管,縮尺比例為1:3。本研究共進行了七組試驗,所有試驗之試體厚度均為30公分。管線模型埋設至試體中央地表下15公分處,並保持管線內部中空無水,加速度及水壓感測器則距離管線模型水平10公分處垂直埋設,用以測量試驗期間之加速度和孔隙水壓歷時。本研究輸入振動台之振動訊號為正弦波,並透過改變不同輸入振動頻率及檯面水平位移、最大運動加速度及愛式強度 (Arias Intensity) 探討對管線上浮量、地表沉陷量之影響。試驗結果顯示在輸入相同檯面水平位移下,輸入越高的振動頻率,管線上浮量越低,地表沉陷量則有上升的趨勢;而在輸入相同振動頻率下,輸入越高的檯面水平位移,管線上浮量及地表沉陷量均有上升的趨勢,而隨著最大運動加速度及愛式強度的增加,管線上浮量及地表沉陷量也均有提升的趨勢。本研究亦根據各學者所提出之上浮理論公式檢核本研究之試驗結果,且利用粒子圖像測速法 (Particle Image Velocimetry, PIV) 分析土壤於管線上浮期間之運動行為趨勢。 | zh_TW |
| dc.description.abstract | Taiwan is located in the Circum-Pacific Seismic Belt, where earthquakes occur frequently. Due to seismic shaking, excess pore water pressure may develop at shallow depths in saturated sandy soil strata, resulting in soil liquefaction and disasters such as building and ground settlement, sand boiling, and uplift or damage to underground pipelines and structures. This study aims to use a rigid box to conduct a series of scaled model tests on a 1-g shaking table to investigate the soil behavior, the uplift of an underground pipeline, and ground settlement during soil liquefaction. The dimensions of the rigid box are 121 cm 35 cm 35.5 cm, and an acrylic window is installed on the long side to record the movement behavior of the pipeline model and soil through a GoPro. The tested material is poorly graded silica sand (SP), and the pipeline model is made of high-density polyethylene (HDPE) and a scale 1:3 of the prototype. Seven tests were conducted with a sample thickness of 30 cm, and the hollow pipeline model was buried 15 cm below the ground surface. The horizontally buried sensors at 10 cm from the pipeline model recorded acceleration and pore water pressure during the test. The input motion was a sine wave, and by varying the input frequency and table displacement, maximum input acceleration, and Arias intensity, the effects on pipeline uplift and ground settlement were explored. The results of the tests showed that, under the same input amplitude, higher input frequencies led to lower pipeline uplift and an increase in ground settlement. Similarly, under the same input frequency, higher input amplitudes resulted in increased pipeline uplift and ground settlement. Moreover, with the increase in maximum input acceleration and Arias intensity, both pipeline uplift and ground settlement showed an increasing trend. This study also verified the test results using the uplift theories proposed by various researchers and analyzed the soil movement behavior during pipeline uplift using Particle Image Velocimetry (PIV). | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:34:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:34:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與方法 1 1.3 論文架構與內容 2 第二章 文獻回顧 3 2.1 土壤液化簡介 3 2.1.1 發生機制與因素 3 2.1.2 常見的土壤液化災害 5 2.2 常見的地下管線 7 2.3 振動台模型試驗 11 2.3.1 振動台試驗之邊界效應與模型相似律 12 2.3.2 相關研究案例回顧 15 第三章 研究方法 28 3.1 剛性盒設計 28 3.2 除氣水系統設計 32 3.2.1 球閥主要功能 32 3.2.2 除氣水製作步驟 33 3.3 試驗儀器與設備 33 3.3.1 量測系統 34 3.3.2 攝影設備 36 3.3.3 MTS 單軸向振動台 38 3.4 試體製作與試驗流程 39 3.4.1 土體基本性質 39 3.4.2 管線模型 40 3.4.3 試驗流程與步驟 42 3.5 試驗條件及參數 46 第四章 模型試驗結果 47 4.1 系統自然頻率測定 48 4.2 試驗1-1 50 4.3 試驗1-2 52 4.4 試驗2 55 4.5 試驗3 57 4.6 試驗4 60 4.7 試驗5 62 4.8 試驗6 65 4.9 試驗7 68 第五章 試驗結果討論與分析 71 5.1 上浮理論與試驗結果之比較 71 5.2 管線上浮量及地表沉陷量分析 79 5.2.1 考量輸入不同振動頻率 79 5.2.2 考量輸入不同振動幅度 82 5.2.3 探討愛式強度對其影響 86 5.3 粒子圖像測速法 (PIV) 分析 90 第六章 結論與建議 99 6.1 結論 99 6.2 建議 100 參考資料 102 附錄A. 試驗影片 104 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 土壤液化 | zh_TW |
| dc.subject | 振動台試驗 | zh_TW |
| dc.subject | 地下管線上浮 | zh_TW |
| dc.subject | 地表沉陷量 | zh_TW |
| dc.subject | 剛性盒 | zh_TW |
| dc.subject | pipelines uplift | en |
| dc.subject | shaking table tests | en |
| dc.subject | settlements | en |
| dc.subject | Liquefaction | en |
| dc.subject | rigid box | en |
| dc.title | 以振動台試驗探討土壤液化引致地下管線上浮之機制 | zh_TW |
| dc.title | Soil Liquefaction Induced Uplift of Buried Pipelines by Shaking Table Tests | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 柯永彥;洪汶宜;楊炫智;葉馥瑄 | zh_TW |
| dc.contributor.oralexamcommittee | Yung-Yen Ko;Wen-Yi Hung;Hsuan-Chih Yang;Fu-Hsuan Yeh | en |
| dc.subject.keyword | 土壤液化,地下管線上浮,振動台試驗,地表沉陷量,剛性盒, | zh_TW |
| dc.subject.keyword | Liquefaction,pipelines uplift,shaking table tests,settlements,rigid box, | en |
| dc.relation.page | 104 | - |
| dc.identifier.doi | 10.6342/NTU202302308 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 10.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
