請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88474完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 康敦彥 | zh_TW |
| dc.contributor.advisor | Dun-Yen Kang | en |
| dc.contributor.author | 洪耀偉 | zh_TW |
| dc.contributor.author | Yao-Wei Hong | en |
| dc.date.accessioned | 2023-08-15T16:28:03Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-01 | - |
| dc.identifier.citation | [1] M. R. A. Hamid et al., "Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges," Journal of Membrane Science, vol. 640, p. 119802, 2021.
[2] R. W. Baker and B. T. Low, "Gas separation membrane materials: a perspective," Macromolecules, vol. 47, no. 20, pp. 6999-7013, 2014. [3] R. S. Murali, T. Sankarshana, and S. Sridhar, "Air separation by polymer-based membrane technology," Separation & Purification Reviews, vol. 42, no. 2, pp. 130-186, 2013. [4] D. R. Vinson, "Air separation control technology," Computers & Chemical Engineering, vol. 30, no. 10-12, pp. 1436-1446, 2006. [5] J. Adewole, A. Ahmad, S. Ismail, and C. Leo, "Current challenges in membrane separation of CO2 from natural gas: A review," International Journal of Greenhouse Gas Control, vol. 17, pp. 46-65, 2013. [6] H. Julian and I. Wenten, "Polysulfone membranes for CO2/CH4 separation: State of the art," IOSR J. Eng, vol. 2, no. 3, pp. 484-95, 2012. [7] S. Kumbharkar, Y. Liu, and K. Li, "High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation," Journal of membrane science, vol. 375, no. 1-2, pp. 231-240, 2011. [8] M. Zhang et al., "Electropolymerization of molecular‐sieving polythiophene membranes for H2 separation," Angewandte Chemie International Edition, vol. 58, no. 26, pp. 8768-8772, 2019. [9] S. Bandehali et al., "Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation," Separation and Purification Technology, vol. 278, p. 119513, 2021. [10] N. Du, G. P. Robertson, J. Song, I. Pinnau, S. Thomas, and M. D. Guiver, "Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation," Macromolecules, vol. 41, no. 24, pp. 9656-9662, 2008. [11] C. H. Jung, J. E. Lee, S. H. Han, H. B. Park, and Y. M. Lee, "Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation," Journal of Membrane Science, vol. 350, no. 1-2, pp. 301-309, 2010. [12] M. Yavari, M. Fang, H. Nguyen, T. C. Merkel, H. Lin, and Y. Okamoto, "Dioxolane-based perfluoropolymers with superior membrane gas separation properties," Macromolecules, vol. 51, no. 7, pp. 2489-2497, 2018. [13] S.-K. Ryi, J.-S. Park, S.-H. Kim, S.-H. Cho, J.-S. Park, and D.-W. Kim, "Development of a new porous metal support of metallic dense membrane for hydrogen separation," Journal of membrane science, vol. 279, no. 1-2, pp. 439-445, 2006. [14] D. P. Tanaka, J. Medrano, J. V. Sole, and F. Gallucci, "Metallic membranes for hydrogen separation," in Current trends and future developments on (bio-) membranes: Elsevier, 2020, pp. 1-29. [15] S. P. Badwal and F. T. Ciacchi, "Ceramic membrane technologies for oxygen separation," Advanced materials, vol. 13, no. 12‐13, pp. 993-996, 2001. [16] T. K. Grekou, D. E. Koutsonikolas, G. Karagiannakis, and E. S. Kikkinides, "Tailor-Made Modification of Commercial Ceramic Membranes for Environmental and Energy-Oriented Gas Separation Applications," Membranes, vol. 12, no. 3, p. 307, 2022. [17] S. Kamarudin, W. Daud, A. Mohammad, A. M. Som, and M. Takriff, "Design of a tubular ceramic membrane for gas separation in a PEMFC system," Fuel Cells, vol. 3, no. 4, pp. 189-198, 2003. [18] E. R. Geus, M. J. Den Exter, and H. van Bekkum, "Synthesis and characterization of zeolite (MFI) membranes on porous ceramic supports," Journal of the Chemical Society, Faraday Transactions, vol. 88, no. 20, pp. 3101-3109, 1992. [19] M. Matsukata, N. Nishiyama, and K. Ueyama, "Preparation of a thin zeolitic membrane," in Studies in surface science and catalysis, vol. 84: Elsevier, 1994, pp. 1183-1190. [20] T. C. T. Pham, H. S. Kim, and K. B. Yoon, "Growth of uniformly oriented silica MFI and BEA zeolite films on substrates," Science, vol. 334, no. 6062, pp. 1533-1538, 2011. [21] C.-K. Chang et al., "Conformational-change-induced selectivity enhancement of CAU-10-PDC membrane for H2/CH4 and CO2/CH4 separation," Journal of Membrane Science Letters, vol. 1, no. 1, p. 100005, 2021. [22] D. S. Chiou et al., "Highly CO2 selective metal–organic framework membranes with favorable coulombic effect," Advanced Functional Materials, vol. 31, no. 4, p. 2006924, 2021. [23] H. Fan et al., "Covalent organic framework–covalent organic framework bilayer membranes for highly selective gas separation," Journal of the American Chemical Society, vol. 140, no. 32, pp. 10094-10098, 2018. [24] H. Fan, M. Peng, I. Strauss, A. Mundstock, H. Meng, and J. r. Caro, "High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation," Journal of the American Chemical Society, vol. 142, no. 15, pp. 6872-6877, 2020. [25] Y. Ying, S. B. Peh, H. Yang, Z. Yang, and D. Zhao, "Ultrathin covalent organic framework membranes via a multi‐interfacial engineering strategy for gas separation," Advanced Materials, vol. 34, no. 25, p. 2104946, 2022. [26] L. Ding et al., "MXene molecular sieving membranes for highly efficient gas separation," Nature communications, vol. 9, no. 1, p. 155, 2018. [27] Y. Fan et al., "An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving," Journal of membrane science, vol. 569, pp. 117-123, 2019. [28] M. Farnam, H. bin Mukhtar, and A. bin Mohd Shariff, "A review on glassy and rubbery polymeric membranes for natural gas purification," ChemBioEng Reviews, vol. 8, no. 2, pp. 90-109, 2021. [29] L. M. Robeson, "The upper bound revisited," Journal of membrane science, vol. 320, no. 1-2, pp. 390-400, 2008. [30] B. Comesaña-Gándara et al., "Redefining the Robeson upper bounds for CO 2/CH 4 and CO 2/N 2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity," Energy & Environmental Science, vol. 12, no. 9, pp. 2733-2740, 2019. [31] Z. Farashi, S. Azizi, M. R.-D. Arzhandi, Z. Noroozi, and N. Azizi, "Improving CO2/CH4 separation efficiency of Pebax-1657 membrane by adding Al2O3 nanoparticles in its matrix," Journal of Natural Gas Science and Engineering, vol. 72, p. 103019, 2019. [32] A. Jomekian, B. Bazooyar, R. M. Behbahani, T. Mohammadi, and A. Kargari, "Ionic liquid-modified Pebax® 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4, N2 and H2," Journal of Membrane Science, vol. 524, pp. 652-662, 2017. [33] A. Jomekian, R. M. Behbahani, T. Mohammadi, and A. Kargari, "CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane," Journal of Natural Gas Science and Engineering, vol. 31, pp. 562-574, 2016. [34] M. Mozafari, R. Abedini, and A. Rahimpour, "Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO 2/CH 4," Journal of Materials Chemistry A, vol. 6, no. 26, pp. 12380-12392, 2018. [35] R. S. Murali, A. Ismail, M. Rahman, and S. Sridhar, "Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations," Separation and Purification Technology, vol. 129, pp. 1-8, 2014. [36] R. S. Murali, K. P. Kumar, A. Ismail, and S. Sridhar, "Nanosilica and H-Mordenite incorporated Poly (ether-block-amide)-1657 membranes for gaseous separations," Microporous and Mesoporous Materials, vol. 197, pp. 291-298, 2014. [37] O. Selyanchyn, R. Selyanchyn, and S. Fujikawa, "Critical role of the molecular interface in double-layered Pebax-1657/PDMS nanomembranes for highly efficient CO2/N2 gas separation," ACS applied materials & interfaces, vol. 12, no. 29, pp. 33196-33209, 2020. [38] B. Yu, H. Cong, Z. Li, J. Tang, and X. S. Zhao, "Pebax‐1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2/N2 and CO2/H2 separation," Journal of Applied Polymer Science, vol. 130, no. 4, pp. 2867-2876, 2013. [39] J. Zhang, J. A. Schott, S. M. Mahurin, and S. Dai, "Porous structure design of polymeric membranes for gas separation," Small Methods, vol. 1, no. 5, p. 1600051, 2017. [40] K.-i. Okamoto, M. Fuji, S. Okamyo, H. Suzuki, K. Tanaka, and H. Kita, "Gas permeation properties of poly (ether imide) segmented copolymers," Macromolecules, vol. 28, no. 20, pp. 6950-6956, 1995. [41] M. Yoshino, K. Ito, H. Kita, and K. I. Okamoto, "Effects of hard‐segment polymers on CO2/N2 gas‐separation properties of poly (ethylene oxide)‐segmented copolymers," Journal of Polymer Science Part B: Polymer Physics, vol. 38, no. 13, pp. 1707-1715, 2000. [42] H. W. Kim and H. B. Park, "Gas diffusivity, solubility and permeability in polysulfone–poly (ethylene oxide) random copolymer membranes," Journal of Membrane Science, vol. 372, no. 1-2, pp. 116-124, 2011. [43] M. L. Jue and R. P. Lively, "Targeted gas separations through polymer membrane functionalization," Reactive and Functional Polymers, vol. 86, pp. 88-110, 2015. [44] K. Matsumoto and P. Xu, "Gas permeation of aromatic polyimides. II. Influence of chemical structure," Journal of membrane science, vol. 81, no. 1-2, pp. 23-30, 1993. [45] S. R. White et al., "Autonomic healing of polymer composites," Nature, vol. 409, no. 6822, pp. 794-797, 2001. [46] E. J. Markvicka, M. D. Bartlett, X. Huang, and C. Majidi, "An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics," Nature materials, vol. 17, no. 7, pp. 618-624, 2018. [47] B. C. Tee, C. Wang, R. Allen, and Z. Bao, "An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications," Nature nanotechnology, vol. 7, no. 12, pp. 825-832, 2012. [48] H. Wang et al., "A mechanically and electrically self‐healing supercapacitor," Advanced Materials, vol. 26, no. 22, pp. 3638-3643, 2014. [49] Y. Zhang et al., "Electrical and mechanical self‐healing in high‐performance dielectric elastomer actuator materials," Advanced Functional Materials, vol. 29, no. 15, p. 1808431, 2019. [50] B. Aïssa et al., "The self-healing capability of carbon fibre composite structures subjected to hypervelocity impacts simulating orbital space debris," International Scholarly Research Notices, vol. 2012, 2012. [51] E. Haddad et al., "Mitigating the effect of space small debris on COPV in space with fiber sensors monitoring and self‐repairing materials," in International Conference on Space Optics—ICSO 2018, 2019, vol. 11180: SPIE, pp. 2640-2652. [52] T. Osada et al., "A novel design approach for self-crack-healing structural ceramics with 3D networks of healing activator," Scientific reports, vol. 7, no. 1, p. 17853, 2017. [53] M. R. Hossain, R. Sultana, M. M. Patwary, N. Khunga, P. Sharma, and S. J. Shaker, "Self-healing concrete for sustainable buildings. A review," Environmental Chemistry Letters, pp. 1-9, 2022. [54] K. W. Shah and G. F. Huseien, "Biomimetic self-healing cementitious construction materials for smart buildings," Biomimetics, vol. 5, no. 4, p. 47, 2020. [55] K. Van Breugel, "Is there a market for self-healing cement-based materials," in Proceedings of the first international conference on self-healing materials, 2007, pp. 1-9. [56] U. Zulfiqar, M. Awais, S. Z. Hussain, I. Hussain, S. W. Husain, and T. Subhani, "Durable and self-healing superhydrophobic surfaces for building materials," Materials Letters, vol. 192, pp. 56-59, 2017. [57] S. Anandan, A. Rudolph, T. Speck, and O. Speck, "Comparative morphological and anatomical study of self-repair in succulent cylindrical plant organs," Flora, vol. 241, pp. 1-7, 2018. [58] M. J. Harrington, O. Speck, T. Speck, S. Wagner, and R. Weinkamer, "Biological archetypes for self-healing materials," Self-healing Materials, pp. 307-344, 2016. [59] C. Paul-Victor et al., "Effect of mechanical damage and wound healing on the viscoelastic properties of stems of flax cultivars (Linum usitatissimum L. cv. Eden and cv. Drakkar)," PLoS One, vol. 12, no. 10, p. e0185958, 2017. [60] L. Laysandra et al., "Design of Self-Cross-Linkable Poly (n-butyl acrylate)-co-poly [N-(hydroxymethyl) acrylamide] Amphiphilic Copolymers toward Elastic and Self-Healing Properties," ACS Applied Polymer Materials, vol. 2, no. 12, pp. 5432-5443, 2020. [61] L. Laysandra et al., "Improving the Lifetime of CsPbBr3 Perovskite in Water Using Self-Healing and Transparent Elastic Polymer Matrix," Frontiers in Chemistry, vol. 8, p. 766, 2020. [62] P. F. Cao et al., "Superstretchable, self‐healing polymeric elastomers with tunable properties," Advanced Functional Materials, vol. 28, no. 22, p. 1800741, 2018. [63] Z. Xie, B.-L. Hu, R.-W. Li, and Q. Zhang, "Hydrogen bonding in self-healing elastomers," ACS omega, vol. 6, no. 14, pp. 9319-9333, 2021. [64] Y. Chen, A. M. Kushner, G. A. Williams, and Z. Guan, "Multiphase design of autonomic self-healing thermoplastic elastomers," Nature chemistry, vol. 4, no. 6, pp. 467-472, 2012. [65] S. D. Burd et al., "Highly selective carbon dioxide uptake by [Cu (bpy-n) 2 (SiF6)](bpy-1= 4, 4′-bipyridine; bpy-2= 1, 2-bis (4-pyridyl) ethene)," Journal of the American Chemical Society, vol. 134, no. 8, pp. 3663-3666, 2012. [66] S. Ma and H.-C. Zhou, "Gas storage in porous metal–organic frameworks for clean energy applications," Chemical Communications, vol. 46, no. 1, pp. 44-53, 2010. [67] D. Cunha et al., "Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks," Chemistry of Materials, vol. 25, no. 14, pp. 2767-2776, 2013. [68] P. Horcajada et al., "Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging," Nature materials, vol. 9, no. 2, pp. 172-178, 2010. [69] M. Nasalevich, M. Van der Veen, F. Kapteijn, and J. Gascon, "Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges," CrystEngComm, vol. 16, no. 23, pp. 4919-4926, 2014. [70] L. T. Nguyen, T. T. Nguyen, K. D. Nguyen, and N. T. Phan, "Metal–organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction," Applied Catalysis A: General, vol. 425, pp. 44-52, 2012. [71] Y. Cui, F. Zhu, B. Chen, and G. Qian, "Metal–organic frameworks for luminescence thermometry," Chemical Communications, vol. 51, no. 35, pp. 7420-7431, 2015. [72] Y. Li, S. Zhang, and D. Song, "A Luminescent Metal–Organic Framework as a Turn‐On Sensor for DMF Vapor," Angewandte Chemie International Edition, vol. 52, no. 2, pp. 710-713, 2013. [73] C. Pettinari, F. Marchetti, N. Mosca, G. Tosi, and A. Drozdov, "Application of metal− organic frameworks," Polymer International, vol. 66, no. 6, pp. 731-744, 2017. [74] A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, and R. A. Fischer, "Flexible metal–organic frameworks," Chemical Society Reviews, vol. 43, no. 16, pp. 6062-6096, 2014. [75] A. Modrow, D. Zargarani, R. Herges, and N. Stock, "The first porous MOF with photoswitchable linker molecules," Dalton transactions, vol. 40, no. 16, pp. 4217-4222, 2011. [76] H. Jin, K. Mo, F. Wen, and Y. Li, "Preparation and pervaporation performance of CAU-10-H MOF membranes," Journal of Membrane Science, vol. 577, pp. 129-136, 2019. [77] S. H. Goh, H. S. Lau, and W. F. Yong, "Metal–Organic Frameworks (MOFs)‐Based Mixed Matrix Membranes (MMMs) for Gas Separation: A Review on Advanced Materials in Harsh Environmental Applications," Small, vol. 18, no. 20, p. 2107536, 2022. [78] N. N. R. Ahmad, H. Mukhtar, D. F. Mohshim, R. Nasir, and Z. Man, "Surface modification in inorganic filler of mixed matrix membrane for enhancing the gas separation performance," Reviews in Chemical Engineering, vol. 32, no. 2, pp. 181-200, 2016. [79] A. Ilyas, N. Muhammad, M. A. Gilani, I. F. Vankelecom, and A. L. Khan, "Effect of zeolite surface modification with ionic liquid [APTMS][Ac] on gas separation performance of mixed matrix membranes," Separation and Purification Technology, vol. 205, pp. 176-183, 2018. [80] Y. Shi et al., "Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation," Separation and Purification Technology, vol. 277, p. 119449, 2021. [81] C. Wang et al., "Improved dispersion performance and interfacial compatibility of covalent-grafted MOFs in mixed-matrix membranes for gas separation," Green Chemical Engineering, vol. 2, no. 1, pp. 86-95, 2021. [82] Y.-W. Hong, L. Laysandra, Y.-C. Chiu, and D.-Y. Kang, "Vacuum-Assisted Self-Healing Amphiphilic Copolymer Membranes for Gas Separation," ACS Applied Materials & Interfaces, p. accepted, 2023. [83] Q. Xia et al., "Metal–organic framework (MOF) facilitated highly stretchable and fatigue-resistant ionogels for recyclable sensors," Materials Horizons, vol. 9, no. 11, pp. 2881-2892, 2022. [84] D. Fröhlich et al., "Water adsorption behaviour of CAU-10-H: a thorough investigation of its structure–property relationships," Journal of Materials Chemistry A, vol. 4, no. 30, pp. 11859-11869, 2016. [85] I. Kammakakam, K. E. O'Harra, G. P. Dennis, E. M. Jackson, and J. E. Bara, "Self‐healing imidazolium‐based ionene‐polyamide membranes: an experimental study on physical and gas transport properties," Polymer International, vol. 68, no. 6, pp. 1123-1129, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88474 | - |
| dc.description.abstract | 薄膜氣體分離技術相較於傳統氣體分離技術(如:低溫蒸餾、吸附)有著較低的能耗,為近十年被廣泛研究的新興技術。然而,當薄膜表面受到外力破壞產生裂痕,將會大幅降低薄膜的氣體分離表現。本研究利用具有自修復能力的高分子薄膜(self-healing polymer membrane),不僅解決裂痕問題,也可延長材料的使用壽命。我們利用刮刀塗佈法製備出兩種緻密的高分子薄膜PBA0.8-co-PNMA0.2與PBA0.8-co-PMAA0.2,並將商用PEBAX-1657氣體分離膜做為對照組,比較這三種材料在機械性質與分離表現的修復效果。透過拉伸試驗,我們發現經過氫鍵修復的PBA0.8-co-PNMA0.2與PBA0.8-co-PMAA0.2薄膜,其機械性質可修復,且其自修復效率達到84.22 % 與88.63 %,而PEBAX-1657 則無法修復機械性質。在氣體分離表現方面,我們發現在真空幫浦的輔助下,可加速薄膜的修復效率。PBA0.8-co-PNMA0.2與PBA0.8-co-PMAA0.2薄膜在破壞後60秒內展現阻氣效果,而PEBAX-1657薄膜上仍存在傷口,導致壓力無法回降。將PBA0.8-co-PNMA0.2薄膜保持在真空環境下修復12小時,其薄膜的分離表現得以維持,其修復後的CO2/N2選擇率為22.92(破壞前的選擇率為17.36);反觀PEBAX-1657在同樣操作下,其修復後的CO2/N2選擇率大幅下降至0.96(破壞前的選擇率為20.09)。未使用真空系統修復的情況下,PBA0.8-co-PNMA0.2薄膜的CO2/N2選擇率下降為1.12,且SEM正面照中仍存在傷口;然而使用真空系統修復後,PBA0.8-co-PNMA0.2薄膜上的傷口明顯消失。最後,為了進一步檢測材料的耐用程度,我們進行了多次破壞測試,結果顯示真空修復後可恢復PBA0.8-co-PNMA0.2薄膜的分離表現,展示了其強韌的自修復特性。
此外,我們也將PBA0.8-co-PNMA0.2與金屬有機骨架CAU-10-H進行混摻,製備成混合基質薄膜(mixed matrix membranes, MMMs),希望利用CAU-10-H優異的分離特性來提升薄膜的分離效果,同時利用PBA0.8-co-PNMA0.2的自修復能力賦予材料分離性能修復的特性。實驗結果顯示,混合基質薄膜內部存在填充物與高分子匹配度差的問題,導致薄膜內部形成了許多空洞。這些空洞降低了薄膜的分離性能,同時在拉伸過程中也產生應力集中現象,降低了材料的機械強度。最後,我們還對混合基質薄膜進行破壞,並發現在真空系統的輔助下,薄膜也展現出了優異的阻氣能力。 | zh_TW |
| dc.description.abstract | Over the past decade, membrane-based gas separation technology has emerged as a highly investigated solution to address the energy-intensive nature of conventional separation technologies such as cryogenic distillation and adsorption. However, cracks on the membrane significantly reduce their separation capabilities. To address this issue, we fabricated two self-healing copolymer membranes, PBA0.8-co-PNMA0.2 and PBA0.8-co-PMAA0.2, via casting method. We compared mechanical properties and gas separation performance recovery capabilities of these membranes to commercially available PEBAX-1657 membrane. We applied NMR, IR, TGA, and DSC for the structure characterization. Besides, the mechanical properties could be completely recovered through hydrogen bonding. As for the recovery of gas separation performance, PBA0.8-co-PNMA0.2 and PBA0.8-co-PMAA0.2 membranes showed gas-resistance capabilities within 60 seconds of being cut, whereas there was a crack on PEBAX-1657 membrane. The CO2/N2 selectivity of PBA0.8-co-PNMA0.2 membrane could recover to 22.92 with vacuum-assisted treatment, while that of PEBAX-1657 membrane decreased to 0.96 under the same process. Additionally, we applied the constant-pressure method and SEM to verify the importance of vacuum system. Without the vacuum-assisted treatment, the CO2/N2 selectivity of PBA0.8-co-PNMA0.2 membrane decreased to 1.12, and there was a wound on the membrane. To investigate the limits of the self-healing capabilities of PBA0.8-co-PNMA0.2, we created a cross-wound by making two cuts on membranes. The results demonstrated the gas permeation properties of PBA0.8-co-PNMA0.2 membrane were not affected by the double wounds, indicating robust self-healing capabilities.
In addition, we incorporated CAU-10-H as the filler along with PBA0.8-co-PNMA0.2 to fabricate the mixed matrix membranes(MMMs). The intention was to leverage the exceptional gas separation capabilities of CAU-10-H to enhance the separation performance of MMMs, while also harnessing the remarkable self-healing properties of PBA0.8-co-PNMA0.2 to restore the gas separation performance after being cut. However, the experimental results revealed a challenge with the compatibility between the filler and polymer, leading the formation of numerous voids within the membranes. These voids not only compromised the separation performance, but also weakened the mechanical strength of membranes. Despite this challenge, the MMMs still demonstrated good gas-resistant capabilities following vacuum-assisted treatment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:28:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:28:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract V 目錄 VII 圖目錄 X 表目錄 XIV 第1章 緒論與文獻回顧 1 1.1薄膜分離技術 1 1.2 氣體分離薄膜介紹 3 1.3 薄膜分離機制 7 1.4 自修復高分子 9 1.5 自修復機制 13 1.5 金屬有機骨架簡介 15 1.6 混合基質薄膜 17 1.7 研究動機與架構 19 第2章 實驗方法 21 2.1 實驗藥品 21 2.2 高分子薄膜製備 22 2.3 CAU-10-H粉體合成 24 2.4 CAU-10-H混合基質薄膜製備 25 2.5材料性質檢測 26 2.6 薄膜機械性質 27 2.7薄膜氣體通透量量測 28 2.8 薄膜自修復性質檢測 30 第3章 實驗結果與討論 32 3.1 高分子結構檢測 32 3.2 高分子熱交聯檢測 34 3.3 高分子黏彈性檢測 37 3.4 高分子薄膜傳統自修復結果 38 3.5 高分子薄膜真空輔助自修復結果 43 3.6 CAU-10-H粉體結構鑑定與分析 52 3.7 CAU-10-H混合基質薄膜結構鑑定與分析 54 3.8 CAU-10-H混合基質薄膜之氣體分離效能 56 3.9 CAU-10-H混合基質薄膜之機械性質檢測 57 3.10 CAU-10-H混合基質薄膜之真空輔助自修復結果 58 第4章 結論與未來展望 61 參考文獻 64 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 混合基質薄膜 | zh_TW |
| dc.subject | 金屬有機骨架 | zh_TW |
| dc.subject | CO2/N2分離 | zh_TW |
| dc.subject | 自修復雙嵌段高分子 | zh_TW |
| dc.subject | 薄膜氣體分離 | zh_TW |
| dc.subject | 氫鍵修復 | zh_TW |
| dc.subject | membrane gas separations | en |
| dc.subject | hydrogen bond | en |
| dc.subject | metal organic framework | en |
| dc.subject | CO2/N2 separations | en |
| dc.subject | self-healing copolymer | en |
| dc.subject | mixed matrix membrane | en |
| dc.title | 具有自修復性質之高分子薄膜 : 真空輔助修復及氣體分離應用 | zh_TW |
| dc.title | Self-healing polymer membrane: vacuum-assisted treatment and gas separation application | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邱昱誠;游文岳;羅世強 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Cheng Chiu;Wen-Yueh Yu;Shyh-Chyang Luo | en |
| dc.subject.keyword | 自修復雙嵌段高分子,薄膜氣體分離,CO2/N2分離,氫鍵修復,金屬有機骨架,混合基質薄膜, | zh_TW |
| dc.subject.keyword | self-healing copolymer,membrane gas separations,CO2/N2 separations,hydrogen bond,metal organic framework,mixed matrix membrane, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202302353 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-03 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 4.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
