請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88397完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍 | zh_TW |
| dc.contributor.advisor | Sheng-Lung Huang | en |
| dc.contributor.author | 劉柏辰 | zh_TW |
| dc.contributor.author | Bo-Chen Liu | en |
| dc.date.accessioned | 2023-08-15T16:06:14Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-27 | - |
| dc.identifier.citation | D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, pp. 1178—1181, 1991.
V. Gorti, R. Malpani, E. Blick et al., “D-FFOCT as a tool to detect cellular activity,” Biophotonics Congress: Biomedical Optics (Translational, Microscopy, OCT, OTS, BRAIN), W1E –W5E Optical Society of America, Washington, DC, 2020. O. Thouvenin, C. Boccara, M. Fink et al., “Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography,” Investigative Ophthalmology & Visual Science, vol. 58, pp. 4605—4615, 2017. Y. S. Baek, S. Haas, H. Hackstein et al., “Identification of novel transcriptional regulators involved in macrophage differentiation and activation in U937 cells,” BMC Immunology, vol. 10, pp. 18—32, 2009. E. Monni, T. Congiu, D. Massa et al., “Human neurospheres: from stained sections to three-dimensional assembly,” Translational Neuroscience, vol. 2, pp. 43—48, 2011. T. A. V. Afanasyeva, J. C. Corral-Serrano, A. Garanto et al., “A look into retinal organoids: methods, analytical techniques, and applications,” Cellular and Molecular Life Sciences, vol. 78, pp. 6505—6532, 2021 C. Apelian, C. Gastaud, A. C. Boccara, “Extracting relevant information for cancer diagnosis from dynamic full field OCT through image processing and learning,” Proceeding of SPIE, vol. 10053, 100531H, 2017. J. Scholler, “Motion artifact removal and signal enhancement to achieve in vivo dynamic full field OCT,” Optics Express, vol. 27, pp. 19562—19572, 2019. Wolfram MathWorld, “Wiener-Khinchin Theorem,” [Online]. Available: https://mathworld.wolfram.com/Wiener-KhinchinTheorem.html. J. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” NASA Contract Report, NASA-CR-120948, 1972. 吳政育, “Full-field optical coherence tomography combined with raman spectroscopy for biological sample characterization,” 國立臺灣大學碩士論文, 2017. 王政凱, “摻鈦藍寶石寬頻晶體光纖光源之製備與檢測,” 國立臺灣大學碩士論文, 2011. Y. Dong, G. Zhou, J. Xu et al., “Luminescence studies of Ce3+:YAG using vacuum ultraviolet synchrotron radiation,” Materials Research Bulletin, vol. 41,pp. 1959—1963, 2006. 施承宏, “全域式光學同調斷層掃描術用於角膜神經影像分析,” 國立臺灣大學碩士論文, 2019. Olympus, “Resolution Criteria and Performance Issues” [Online]. Available: https://www.olympus-lifescience.com/zh/microscope-resource/primer/digitalimaging/deconvolution/deconresolution/ C. Apelian, F. Harms, O. Thouvenin et al., “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by temporal analysis of interferometric signals,” Biomedical Optics Express, vol. 7, Issue 4, pp. 1511—1524, 2016. C. C. Tsai, C. K. Chang, K. Y. Hsu et al., “Full-depth epidermis tomography using a mirau-based full-field optical coherence tomography,” Biomedical Optics Express, vol. 5, Issue 9, pp. 3001—3010, 2014. MATLAB MathWorks, “2-D convolution”[Online]. Available: https://www.mathworks.com/help/matlab/ref/conv2.html. CSDN, “二維卷積詳解,zero padding 和shape=full, same, valid詳解” [Online]. Available: https://blog.csdn.net/weixin_42150026/article/details/104554895. 知乎, “如何通俗易懂地解釋卷積” [Online]. Available: https://www.zhihu.com/question/22298352. J. Scholler, K. Groux, O. Goureau et al., “Dynamic full-field optical coherence tomography: 3d live-imaging of retinal organoids,” Light: Science & Applications, vol. 9, 140, 2020. R. A. Khanbeigi, A. Kumar, F. Sadouki et al., “The delivered dose: Applying particokinetics to in vitro investigations of nanoparticle internalization by macrophages,” Journal of Controlled Release, vol. 162, pp. 259—266, 2012. D. A. Fletcher, R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature, vol. 463, pp. 485—492, 2010. S. Valdebenito, S. Malik, R. Luu et al., “Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions,” Scientific Reports, vol. 11, 14556, 2021. C. Zurzolo, “Tunneling nanotubes: Reshaping connectivity,” Current Opinion in Cell Biology, vol, 71, pp. 139—147, 2021. S. Park, T. Nguyen, E. Benoit et al., “Quantitative evaluation of the dynamic activity of HeLa cells in different viability states using dynamic full-field optical coherence microscopy,” Biomedical Optics Express, vol. 12, pp. 6431—6441, 2021. 陳柏穎, “全域式光學同調斷層掃描術於三維黑色素瘤細胞株之細胞凋亡研究,” 國立臺灣大學碩士論文, 2021. W. Khalil, T. Tiraihi, M. Soleimani et al.,“Conversion of neural stem cells into functional neuron-like cells by microrna-218: differential expression of functionality genes,” Neurotoxicity Research, vol. 38, pp. 707—722, 2020. M. Völkner, M. Zschätzsch, M. Rostovskaya et al., “Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis,” Stem Cell Reports, vol. 6, pp. 525—538, 2016. A. T. Feldman, D. Wolfe, ‘‘Tissue processing and hematoxylin and eosin staining,’’ Histopathology, vol. 1180, pp. 31—43, 2014. 游鈐, ‘‘Mirau 全域式光學同調斷層掃描術結合近紅外光拉曼光譜用於皮膚細胞之影像與頻譜特性分析,’’ 國立臺灣大學碩士論文, 2018. H. M. Leung, M. L. Wang, H. Osman et al., “Imaging intracellular motion with dynamic micro-optical coherence tomography,” Biomedical Optics Express, vol. 11, pp. 2768—2778, 2020. M. Münter, M. vom Endt, M. Pieper et al., “Dynamic contrast in scanning microscopic OCT,” Optics Letters, vol. 45, pp. 4766—4769, 2020. O. Thouvenin, C. Apelian, A. Nahas et al., “Full-field optical coherence tomography as a diagnosis tool: Recent progress with multimodal imaging,” Applied Sciences, vol. 7, 236, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88397 | - |
| dc.description.abstract | 本研究利用全域式光學同調斷層掃描術(Full-field optical coherence tomography; FF-OCT),配合Ce3+:YAG晶體光纖之自發輻射作為系統光源,對巨噬細胞、脂肪間質幹細胞生成之神經球細胞以及誘導型多功能幹細胞生成之類胚胎體等細胞樣本進行掃描和影像建構。透過此系統,我們能夠獲得橫向解析度為0.8 µm,縱向解析度為0.97 µm的橫平面、縱平面以及三維立體影像。
以Ce3+:YAG FF-OCT為基礎,本研究進一步開發動態光學同調斷層掃描術(Dynamic full-field optical coherence tomography; D-FF-OCT)。在D-FF-OCT的掃描過程中,我們將影像擷取平面停留固定於樣本任意深度,並記錄該固定深度下背向散射光訊號隨時間之變化。藉由D-FF-OCT,我們能夠獲得以長度-長度-時間所組成的三維影像,其空間解析度與FF-OCT相同,而時間解析度為7.7 ms。 此外,我們自行撰寫了分析程式,將D-FF-OCT所採集之時域資訊以像素為單位,轉換為頻譜圖,並進行特徵頻率的分析。為了降低影像中的雜訊干擾以提升整體訊噪比,我們在程式中採用縱向一維高斯及橫向二維高斯之卷積平均法對訊號進行預處理。在橫向進行5*5個像素的高斯卷積平均後,系統之橫向解析度變為1.82 µm,而在縱向進行11點高斯卷積平均後,時間解析度則為9.35 ms。 在巨噬細胞的實驗中,透過上色動態影像可有效增強細胞核的對比度,未來可應用於影像判讀的輔助工具。而在神經球細胞和類胚胎體的實驗中,利用上色動態影像,我們能夠針對細胞的動態特性進行分析,並從頻譜圖中區分環境雜訊與動態訊號之差異。 在上色動態影像中,我們設定了低頻閾值與中頻閾值,將所有頻譜圖分為低頻區段、中頻區段及高頻區段。透過閾值的設定,確保三區段之曲線下總面積相等。其中,巨噬細胞的低頻閾值為4.94 ± 0.3 Hz,中頻閾值為12.86 ± 0.53 Hz;神經球細胞的低頻閾值為6.67 ± 0.43 Hz,中頻閾值為14.34 ± 0.24 Hz;類胚胎體的低頻閾值為5.94 ± 0.46 Hz,中頻閾值為14.39 ± 0.37 Hz。透過三種樣本的閾值比較,我們可以推論出相較於巨噬細胞,神經球細胞與類胚胎體具有更多高頻峰值訊號。這些由D-FF-OCT所測得之具空間解析度的動態資訊,未來有機會與細胞生理指標進行比對,以更進一步地揭開細胞的生理運作機制。 | zh_TW |
| dc.description.abstract | In this study, we utilized full-field optical coherence tomography (FF-OCT) combined with spontaneous emission from Ce3+:YAG crystal fiber as the light source to perform scanning and image reconstruction of macrophages, ADMSC-derived neurospheres, and iPSC-derived embryoid bodies. The system achieved high-resolution en face, cross-sectional, and three-dimensional volumetric images with lateral resolution of 0.8 μm and axial resolution of 0.97 μm.
Based on Ce3+:YAG FF-OCT, we developed dynamic full-field optical coherence tomography (D-FF-OCT). D-FF-OCT involved fixing the image acquisition plane at a specific depth within the sample and capturing the temporal variation of backscattered light signals. With D-FF-OCT, we obtained three-dimensional images composed of length-length-time dimensions, maintaining the spatial resolution of FF-OCT and achieving a temporal resolution of 7.7 ms. To analyze the D-FF-OCT data, we developed a analysis program that transformed the acquired temporal information into spectrograms on a per-pixel basis. The program included signal pre-processing techniques such as axial one-dimensional Gaussian convolution average and lateral two-dimensional Gaussian convolution average to reduce noise and enhance the signal-to-noise ratio. The temporal resolution resulted in 9.35 ms after applying an 11-point Gaussian convolution average, while the lateral resolution became 1.82 μm through a 5x5-pixel Gaussian convolution average. In the experiments with macrophages, color-coded D-FF-OCT imaging effectively enhanced the contrast of the cell nucleus, providing a potential auxiliary tool for image interpretation. In the experiments with neurospheres and embryoid bodies, color-coded D-FF-OCT imaging allows us to analyze the dynamic characteristics of the cells and differentiate between environmental noise and dynamic signals in the spectrogram. In the color-coded dynamic imaging, we set low-frequency and mid-frequency thresholds to divide all spectrograms into low-frequency, mid-frequency, and high-frequency segments. These thresholds were adjusted to ensure equal total areas under the curve for each segment. Specifically, for macrophages, the low-frequency threshold is 4.94 ± 0.3 Hz, and the mid-frequency threshold is 12.86 ± 0.53 Hz. For neurospheres, the low-frequency threshold is 6.67 ± 0.43 Hz, and the mid-frequency threshold is 14.34 ± 0.24 Hz. For embryoid bodies, the low-frequency threshold is 5.94 ± 0.46 Hz, and the mid-frequency threshold is 14.39 ± 0.37 Hz. By comparing the thresholds among the three samples, we can infer that neurospheres and embryoid bodies exhibit more high-frequency peak signals compared to macrophages.The spatially resolved dynamic information obtained by D-FF-OCT has the potential to be compared with cellular physiological markers in the future, allowing for a deeper understanding of the cellular physiological mechanisms. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:06:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:06:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 XVI Chapter 1 緒論 1 Chapter 2 Mirau-based全域式光學同調斷層掃描術介紹 2 2.1 光學同調斷層掃描術(OCT)原理 2 2.2 Mirau-based 全域式光學同調斷層掃描系統 10 2.2.1 系統簡介 10 2.2.2 影像處理 20 2.2.3 系統橫向解析度及縱向解析度 23 2.2.4 系統影像訊噪比 26 Chapter 3 動態全域式光學同調斷層掃描術介紹及分析程式介紹 31 3.1 動態全域式光學同調斷層掃描術(D-FF-OCT) 31 3.2 D-FF-OCT分析上色程式之介紹 38 Chapter 4 In vitro巨噬細胞影像量測與分析結果 52 4.1 樣本製備方法 52 4.2 巨噬細胞之FF-OCT影像量測結果 56 4.3 以巨噬細胞之動態影像強化細胞核之對比度 63 Chapter 5 脂肪間質幹細胞生成之神經球細胞團塊與誘導型多功能幹細胞生成之類胚胎體影像量測與分析結果 68 5.1 樣本製備方法與量測方法 68 5.1.1 間質幹細胞生成之神經球細胞培養過程 68 5.1.2 誘導型多功能幹細胞生成之類胚胎體培養過程 72 5.1.3 樣本量測方法 73 5.2 FF-OCT影像量測結果 75 5.2.1 間質幹細胞生成之神經球細胞FF-OCT影像 75 5.2.2 誘導型多功能幹細胞生成之類胚胎體FF-OCT影像 79 5.2.3 樣本掃描深度受限之原因探討 83 5.3 以D-FF-OCT量測細胞動態特性之結果 87 5.3.1 間質幹細胞生成之神經球細胞D-FF-OCT影像結果與分析 87 5.3.2 誘導型多功能幹細胞生成之類胚胎體 D-FF-OCT影像結果與分析 95 Chapter 6 結論與未來展望 101 6.1 結論 101 6.2 未來展望 104 Reference 105 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 上色動態影像 | zh_TW |
| dc.subject | 全域式光學同調斷層掃描 | zh_TW |
| dc.subject | 動態特性分析 | zh_TW |
| dc.subject | 影像判讀輔助 | zh_TW |
| dc.subject | color-coded D-FF-OCT image | en |
| dc.subject | dynamic characteristic analysis | en |
| dc.subject | full-field optical coherence tomography | en |
| dc.subject | image interpretation aid | en |
| dc.title | 利用全域式光學同調斷層掃描術與自編程式進行影像判讀輔助及樣本動態分析 | zh_TW |
| dc.title | Image Interpretation Assistance and Sample Dynamic Analysis Using Full-Field Optical Coherence Tomography and Customized Program | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳偉勵 | zh_TW |
| dc.contributor.coadvisor | Wei-Li Chen | en |
| dc.contributor.oralexamcommittee | 林昭文;蔡佳穎 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Wen Lin;Chia-Ying Tsai | en |
| dc.subject.keyword | 全域式光學同調斷層掃描,動態特性分析,影像判讀輔助,上色動態影像, | zh_TW |
| dc.subject.keyword | full-field optical coherence tomography,dynamic characteristic analysis,image interpretation aid,color-coded D-FF-OCT image, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202301983 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-31 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 10.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
