Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88336
Title: 基於持續與雙階段學習的場景文字標註平台研究
Research on Constructing Scene Text Annotation Platform Using Continual Learning Technology in Two Stages
Authors: 陳冠盛
Guan-Sheng Chen
Advisor: 陳祝嵩
Chu-Song Chen
Keyword: 場景文字,文字偵測,文字辨識,標注系統,持續學習,長尾問題,
Scene Text,Text Detection,Text Recognition,Annotation System,Continual Learning,Long-Tail Problem,
Publication Year : 2023
Degree: 碩士
Abstract: 場景文字領域的任務旨在偵測與辨認生活周遭的文字。然而,在收集和標註場景文字的資料集時,需要大量的時間和精力,因此在標注過程中使用高效且可靠的工具,以及適當的安排標注流程是不可或缺的。我們針對繁體中文環境下的場景文字資料集之標注任務,建立了一個標注系統。在此系統中,我們嘗試使用持續學習的技術來快速調整自動提示模型,同時針對中文類別數過多,導致字元分布不平衡的問題引入長尾技術。此外,我們討論了不同的標注流程下,自動提示模型的性能。為了比較這些技術與流程的優劣,我們也提出了一個適用於標注系統的評估方式。最後,我們在系統中引入了基礎模型,以及分析不同工具對標注者標注時間的影響。透過這些技術的應用,將能實現更高效率的資料集標注。
Scene-text models aim to detect and recognize texts in our daily life environment. However, it requires lots of time and efforts to build a scene text dataset annotated by humans. Therefore, we often need to provide the detection and recognition results based on the currently available model to reduce the effort of labeling. To this end, we develop an annotation system for annotating Traditional Chinese scene text datasets. In this system, we try to use continual learning techniques to quickly adjust the automatic labeling tools and attempt to adapt existing long-tail techniques into our system to address imbalanced character distribution in Chinese characters. In addition, we discuss the performance of the automatic labeling tools under different annotation processes. To compare the strengths and weaknesses of these techniques and processes, we also propose a new evaluation protocol for the annotation system. Finally, we introduce the foundation model combined in our system as well as analyze the impact of different tools on the annotation time. By incorporating these techniques, we can achieve a more efficient annotation process.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88336
DOI: 10.6342/NTU202302185
Fulltext Rights: 同意授權(限校園內公開)
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
Access limited in NTU ip range
19.93 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved