請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88286完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林偉傑 | zh_TW |
| dc.contributor.advisor | Wai-Kit Lam | en |
| dc.contributor.author | 盧德倫 | zh_TW |
| dc.contributor.author | Te-Lun Lu | en |
| dc.date.accessioned | 2023-08-09T16:22:23Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-21 | - |
| dc.identifier.citation | A. Auffinger, M. Damron, and J. Hanson. 50 years of first passage percolation. arXiv e-prints, page arXiv:1511.03262, Nov. 2015.
A. Auffinger and S. Tang. On the time constant of high dimensional first passage percolation. Electronic Journal of Probability, 21:1–23, 2016. O. Couronné, N. Enriquez, and L. Gerin. Construction of a short path in highdimensional first passage percolation. 2011. J. T. Cox and R. Durrett. Some limit theorems for percolation processes with necessary and sufficient conditions. The Annals of Probability, pages 583–603, 1981. J. T. Cox and R. Durrett. Oriented percolation in dimensions d≥ 4: bounds and asymptotic formulas. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 93, pages 151–162. Cambridge University Press, 1983. D. Dhar. First passage percolation in many dimensions. Physics Letters A, 130(4-5):308–310, 1988. G. Grimmett. Percolation. Springer New York, 2013. J. Hammersley. Long-chain polymers and self-avoiding random walks ii. Sankhyā: The Indian Journal of Statistics, Series A, pages 269–272, 1963. J. M. Hammersley and D. J. Welsh. First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Bernoulli 1713, Bayes 1763,Laplace 1813: Anniversary Volume. Proceedings of an International Research Seminar Statistical Laboratory University of California, Berkeley 1963, pages 61–110. Springer, 1965. H. Kesten. Aspects of first passage percolation. In École d’été de probabilités de Saint Flour XIV-1984, pages 125–264. Springer, 1986. J. F. C. Kingman. Subadditive ergodic theory. The annals of Probability, pages 883–899, 1973. T. M. Liggett. An improved subadditive ergodic theorem. The Annals of Probability, 13(4):1279–1285, 1985. A. Martinsson. First-passage percolation on cartesian power graphs. The Annals of Probability, 46(2):1004–1041, 2018. P. Révész. Random walk in random and non-random environments. World Scientific, 2013. J. van den Berg and H. Kesten. Inequalities for the time constant in first-passage percolation. The Annals of Applied Probability, pages 56–80, 1993. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88286 | - |
| dc.description.abstract | 初抵滲透模型是一個由 Hammersley 跟 Welsh 在 1965 年提出的廣為人知的統計物理模型。模型的定義如下。令$\mathbb{Z}^d$為$d$維的整數網格、$\mathcal{E}^d$為收集所有在$\mathbb{Z}^d$上的(無向)最近鄰邊的集合,也就是\[\mathcal{E}^d = \{\{\mathbf{x}, \mathbf{y}\} \mid \mathbf{x}, \mathbf{y} \in \mathbb{Z}^d, \|\mathbf{x} - \mathbf{y}\|_1 = 1\}.\]對於每條邊$e \in \mathcal{E}^d$,我們指定一個非負的隨機變數$\tau_e$, 稱為$e$的\textbf{權重(穿越時間)}。對於在$\mathbb{Z}^d$上任意的網格路徑$\gamma$,\textbf{$\gamma$的穿越時間}有如下的定義\[\tau(\gamma) = \sum_{e \in \gamma} \tau_e.\]對於兩個整數點$\mathbf{x}, \mathbf{y} \in \mathbb{Z}^d$,我們定義$\Gamma(\mathbf{x}, \mathbf{y})$為在$\mathbb{Z}^d$上所有連接$\mathbf{x}$與$\mathbf{y}$的網格路徑。對於一個點$\mathbf{x} \in \mathbb{R}^d$,我們定義$\left\lfloor\mathbf{x} \right\rfloor \in \mathbb{Z}^d$為唯一使得$\mathbf{x} \in \left\lfloor\mathbf{x}\right\rfloor + [0, 1)^d$的整數點。現在,我們定義\textbf{從$\mathbf{x}$到$\mathbf{y}$的初抵時間}為\[\tau(\mathbf{x}, \mathbf{y}) = \inf\{\tau(\gamma) \mid \gamma \in \Gamma(\left\lfloor\mathbf{x}\right\rfloor, \left\lfloor\mathbf{y}\right\rfloor)\}.\]
儘管模型本身很易於理解,但時至今日,仍有許多關於這個模型的問題懸而未決。其中一個就是關於時間常數與極限形狀的決定。在這篇碩士論文中,我們會考慮時間常數在維度趨向無限時的漸進行為,並以此在維度夠高時去否決部分的極限形狀候選。 | zh_TW |
| dc.description.abstract | First-passage percolation (FPP) is a widely recognized statistical physics model that was originally proposed by Hammersley and Welsh in 1965. The model is defined as follows. Let $\mathbb{Z}^d$ be the $d$-dimensional integer lattice and $\mathcal{E}^d$ be the collection of (non-oriented) nearest-neighbour edges in $\mathbb{Z}^d$. That is, \[\mathcal{E}^d = \{\{\mathbf{x}, \mathbf{y}\} \mid \mathbf{x}, \mathbf{y} \in \mathbb{Z}^d, \|\mathbf{x} - \mathbf{y}\|_1 = 1\}.\]We assign to each edge $e \in \mathcal{E}^d$ a non-negative random variable $\tau_e$, called the \textbf{weight (passage time)} of $e$. For any lattice path $\gamma$ on $\mathbb{Z}^d$, the \textbf{passage time of $\gamma$} is defined by \[\tau(\gamma) = \sum_{e \in \gamma} \tau_e.\]For two points $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^d$, we define $\Gamma(\mathbf{x}, \mathbf{y})$ to be all lattice paths on $\mathbb{Z}^d$ connecting $\mathbf{x}$ to $\mathbf{y}$. For a point $\mathbf{x} \in \mathbb{R}^d$, we define the ``floor" of $\mathbf{x}$, $\left\lfloor\mathbf{x} \right\rfloor \in \mathbb{Z}^d$, to be the unique vertex in $\mathbb{Z}^d$ such that $\mathbf{x} \in \left\lfloor\mathbf{x}\right\rfloor + [0, 1)^d$. Now, we define the \textbf{first-passage time from $\mathbf{x}$ to $\mathbf{y}$} by\[\tau(\mathbf{x}, \mathbf{y}) = \inf\{\tau(\gamma) \mid \gamma \in \Gamma(\left\lfloor\mathbf{x}\right\rfloor, \left\lfloor\mathbf{y}\right\rfloor)\}.\]
Despite its apparent simplicity, numerous unresolved problems persist within this model. Among these, determining the time constant and the limit shape are particularly noteworthy. In this master thesis, we aim to investigate the asymptotic behavior of the time constant as the dimension tends to infinity and subsequently reject several potential limit shapes in sufficiently high dimensions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:22:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:22:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v List of Figures ix 1 Introduction 1 1.1 Known results 2 1.2 Main results 5 1.3 Outline of the thesis 6 1.4 Notations 7 2 Preliminaries: lattice paths 11 2.1 Self-avoiding paths 13 2.2 Pairs of self-avoiding paths 19 2.3 Diagonal paths 24 3 Preliminaries: first-passage percolation 27 3.1 Time constant and its properties 27 3.2 Cox-Durret shape theorem 33 3.3 Stochastic dominance 40 4 Proof of Theorems 1.4, 1.6 and 1.7 43 4.1 Proof of the lower bound 43 4.2 Proof of the upper bound 49 4.3 A discussion of the upper bound for p = 1 61 4.4 The cases a = ∞ and a = 0 63 4.5 A scaling relation 65 4.6 Lower bound in the diagonal direction 66 4.7 Upper bound in the diagonal direction 69 4.8 Application to limit shape 70 A Simple random walks 73 B Kingman’s subadditve ergodic theorem 75 C Diagonal direction for p = 1 79 Reference 82 | - |
| dc.language.iso | en | - |
| dc.subject | 初抵滲透模型 | zh_TW |
| dc.subject | 極限形狀 | zh_TW |
| dc.subject | 時間常數 | zh_TW |
| dc.subject | First-passage Percolation | en |
| dc.subject | Limit Shape | en |
| dc.subject | Time Constant | en |
| dc.title | 高維度初抵滲透模型的時間常數與極限形狀 | zh_TW |
| dc.title | Time Constant and Limit Shape of High-Dimensional First-Passage Percolation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李志煌;陳隆奇 | zh_TW |
| dc.contributor.oralexamcommittee | Jhih-Huang Li;Lung-Chi Chen | en |
| dc.subject.keyword | 初抵滲透模型,時間常數,極限形狀, | zh_TW |
| dc.subject.keyword | First-passage Percolation,Time Constant,Limit Shape, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202301745 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-24 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 977.15 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
