Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88273
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施上粟zh_TW
dc.contributor.advisorShang-Shu Shihen
dc.contributor.author王丰聖zh_TW
dc.contributor.authorFeng-Sheng Wangen
dc.date.accessioned2023-08-09T16:18:57Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-24-
dc.identifier.citation1. Al-Rubaei, A., Engström, M., Viklander, M., & Blecken, G. (2014). Long-Term Treatment Efficiency of a Constructed Stormwater Wetland: Preliminary Results.
2. Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carbon Management, 3(3), 313-322.
3. Andrews, E. D. (2000). Bed material transport in the Virgin River, Utah Water Resources Research, 36(2), 585-596.
4. Benson, M. A., & Dalrymple, T. (1967). General field and office procedures for indirect discharge measurements [Report](03-A1). (Techniques of Water-Resources Investigations, Issue. U. S. G. Survey).
5. Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith III, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global biogeochemical cycles, 22(2).
6. Bryant, M. A., Bryant, D. B., Provost, L. A., Hurst, N. R., McHugh, M., Tomiczek, T., Engineers, U. S. A. C. o., Research, E., Center, D., Coastal, Laboratory, H., & Laboratory, E. (2022). Wave Attenuation of Coastal Mangroves at a Near-prototype Scale. U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory and Environmental Laboratory.
7. Chen, C. P., Tian, B., Wu, W. T., Duan, Y. Q., Zhou, Y. X., & Zhang, C. (2023). UAV Photogrammetry in Intertidal Mudflats: Accuracy, Efficiency, and Potential for Integration with Satellite Imagery. Remote Sensing, 15(7), Article 1814.
8. Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global biogeochemical cycles, 17(4).
9. Chou, M.-Q., Lin, W.-J., Lin, C.-W., Wu, H.-H., & Lin, H.-J. (2022). Allometric equations may underestimate the contribution of fine roots to mangrove carbon sequestration. Science of The Total Environment, 833, 155032.
10. Chow, V. T. (1959). Open channel hydraulics. .
11. Cowan, W. L. (1956). Estimating hydraulic roughness coefficients. Agricultural engineering, 37(7), 473-475.
12. Davis, J. H. (1940). The ecology and geologic role of Mangroves in Florida.
13. Dietz, M., & Clausen, J. (2005). A Field Evaluation of Rain Garden Flow and Pollutant Treatment. Water Air and Soil Pollution, 167, 123-138.
14. Freeman, G. E., Rahmeyer, W. H., & Copeland, R. R. (2000). Determination of Resistance Due to Shrubs and Woody Vegetation.
15. Furukawa, K., Wolanski, E., & Mueller, H. (1997). Currents and sediment transport in mangrove forests. ESTUARINE COASTAL AND SHELF SCIENCE, 44(3), 301-310.
16. Gilman, E. L., Ellison, J., Duke, N. C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: A review. Aquatic Botany, 89(2), 237-250.
17. Greimann, B., Lai, Y., & Huang, J. (2008). Two-Dimensional Total Sediment Load Model Equations. Journal of Hydraulic Engineering-asce - J HYDRAUL ENG-ASCE, 134.
18. Gupta, H. V., & Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10).
19. Herb, W., Mohseni, O., & Stefan, H. (2009). Simulation of Temperature Mitigation by a Stormwater Detention Pond1. JAWRA Journal of the American Water Resources Association, 45, 1164-1178.
20. Hsieh, C. M., Chou, D., & Hsu, T. W. (2022). Using Modified Harmonic Analysis to Estimate the Trend of Sea-Level Rise around Taiwan. Sustainability, 14(12).
21. IPCC. (2021). [Climate change 2021]. (Climate change 2021).
22. Jitthaisong, O., Dhanmanonda, P., Chunkao, K., & Teejuntuk, S. (2012). Water Quality from Mangrove Forest: The King's Royally Initiated Laem Phak Bia Environmental Research and Development Project, Phetchaburi Province, Thailand. Modern Applied Science, 6.
23. Kandasamy, K., Rajendran, N., Balakrishnan, B., Thiruganasambandam, R., & Narayanasamy, R. (2021). Carbon sequestration and storage in planted mangrove stands of Avicennia marina. Regional Studies in Marine Science, 43, 101701.
24. Kathiresan, K., & Rajendran, N. (2005). Coastal mangrove forests mitigated tsunami. Estuarine, Coastal and Shelf Science, 65(3), 601-606.
25. Lai, Y. G. (2008). SRH-2D version 2: Theory and User's Manual
26. Lai, Y. G., Gaeuman, D., Department, Y. T. F., & Division, T. R. (2020). SRH-2D User's Manual: Sediment Transport and Mobile-Bed Modeling.
27. Lai, Y. G., & Sixta, M. (2016). Modeling In-Stream Structures and Internal Features with SRH-2D.
28. Lee, H.-Y., & Shih, S.-S. (2004). Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland. Ecological Engineering, 23(2), 85-94.
29. Liao, K.H., Deng, S., & Puay Yok, T. (2017). Blue-Green Infrastructure: New Frontier for Sustainable Urban Stormwater Management. In (pp. 203-226).
30. Liu, D. (2020). A rational performance criterion for hydrological model. Journal of Hydrology, 590, 125488.
31. Lovelock, C. E., Cahoon, D. R., Friess, D. A., Guntenspergen, G. R., Krauss, K. W., Reef, R., Rogers, K., Saunders, M. L., Sidik, F., Swales, A., Saintilan, N., Thuyen, L. X., & Triet, T. (2015). The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526(7574), 559-563.
32. MacKinnon, K., Sobrevila, C., & Hickey, V. (2008). Biodiversity, climate change, and adaptation: nature-based solutions from the World Bank portfolio.
33. Macnae, W. (1969). A General Account of the Fauna and Flora of Mangrove Swamps and Forests in the Indo-West-Pacific Region. In F. S. Russell & M. Yonge (Eds.), Advances in Marine Biology (Vol. 6, pp. 73-270). Academic Press.
34. Maiti, R., Rodríguez, H. G., & Ivanova, N. S. (2016). Carbon capture, carbon sequestration and carbon fixation. In Autoecology and ecophysiology of woody shrubs and trees (pp. 199-219).
35. Marchand, C. (2017). Soil carbon stocks and burial rates along a mangrove forest chronosequence (French Guiana). Forest Ecology and Management, 384, 92-99.
36. Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552-560.
37. Meng, Y., Gou, R., Bai, J., Moreno-Mateos, D., Davis, C. C., Wan, L., Song, S., Zhang, H., Zhu, X., & Lin, G. (2022). Spatial patterns and driving factors of carbon stocks in mangrove forests on Hainan Island, China. Global Ecology and Biogeography, 31(9), 1692-1706.
38. Murray, B. C., Pendleton†, L., Jenkins‡, W. A., & Sifleet, S. (2011). Blue carbon report.
39. Murti, R., & Buyck, C. (2014). Safe Havens: Protected Areas for Disaster Risk Reduction and Climate Change Adaptation.
40. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290.
41. Newson, M. D., & Newson, C. L. (2000). Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. PROGRESS IN PHYSICAL GEOGRAPHY, 24(2), 195-217.
42. Organization, W. M. (2022). State of the Global Climate 2021.
43. Parker, G. (1990). Surface-based bedload transport relation for gravel rivers. Journal of Hydraulic Research, 28(4), 417-436.
44. Phillips, B. C., & Sutherland, A. J. (1989). Spatial lag effects in bed load sediment transport. Journal of Hydraulic Research, 27(1), 115-133.
45. Qu, Y., Jevrejeva, S., Jackson, L. P., & Moore, J. C. (2019). Coastal Sea level rise around the China Seas. GLOBAL AND PLANETARY CHANGE, 172, 454-463.
46. Renaud, F., Sudmeier-Rieux, K., & Estrella, M. (2013). The Role of Ecosystems in Disaster Risk Reduction.
47. Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33-45.
48. Rodi, W. (1993). Turbulence Models and Their Application in Hydraulics, 3rd ed.
49. Ruangpan, L., Vojinovic, Z., Di Sabatino, S., Leo, L. S., Capobianco, V., Oen, A. M. P., McClain, M. E., & Lopez-Gunn, E. (2020). Nature-based solutions for hydro-meteorological risk reduction: a state-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci., 20(1), 243-270.
50. Saintilan, N., Khan, N. S., Ashe, E., Kelleway, J. J., Rogers, K., Woodroffe, C. D., & Horton, B. P. (2020). Thresholds of mangrove survival under rapid sea level rise. Science, 368(6495), 1118-1121.
51. Schaefli, B., & Gupta, H. V. (2007). Do Nash values have value? HYDROLOGICAL PROCESSES, 21(15), 2075-2080.
52. Seddon, N., Smith, A., Smith, P., Key, I., Chausson, A., Girardin, C., House, J., Srivastava, S., & Turner, B. (2021). Getting the message right on nature‐based solutions to climate change. Global Change Biology, 27.
53. Serrano, O., Lovelock, C. E., B. Atwood, T., Macreadie, P. I., Canto, R., Phinn, S., Arias-Ortiz, A., Bai, L., Baldock, J., Bedulli, C., Carnell, P., Connolly, R. M., Donaldson, P., Esteban, A., Ewers Lewis, C. J., Eyre, B. D., Hayes, M. A., Horwitz, P., Hutley, L. B., . . . Duarte, C. M. (2019). Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nature Communications, 10(1), 4313.
54. Shih, S.-S. (2020). Spatial Habitat Suitability Models of Mangroves with Kandelia obovata. Forests, 11(4).
55. Shih, S. S., Hsieh, H. L., Chen, P. H., Chen, C. P., & Lin, H. J. (2015). Tradeoffs between reducing flood risks and storing carbon stocks in mangroves. Ocean & Coastal Management, 105, 116-126.
56. Shih, S. S., Hsu, W. C., & Hsu, Y. W. (2023). Waterline digital elevation model development to quantify inundation duration and coastal protection of tidal wetlands. Science of The Total Environment, 874, 162519.
57. Shih, S. S., Huang, Z. Z., & Hsu, Y. W. (2022). Nature-based solutions on floodplain restoration with coupled propagule dispersal simulation and stepping-stone approach to predict mangrove encroachment in an estuary. Science of The Total Environment, 851, 158097.
58. Shih, S. S., & Chen, P. C. (2021). Identifying tree characteristics to determine the blocking effects of water conveyance for natural flood management in urban rivers. Journal of Flood Risk Management, 14(4), e12742.
59. Spencer, T., Schuerch, M., Nicholls, R. J., Hinkel, J., Lincke, D., Vafeidis, A. T., Reef, R., McFadden, L., & Brown, S. (2016). Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. GLOBAL AND PLANETARY CHANGE, 139, 15-30.
60. Sulochanan, B., Ratheesh, L., Veena, S., Padua, S., Prema, D., Rohit, P., Kaladharan, P., & Kripa, V. (2022). Water and sediment quality parameters of the restored mangrove ecosystem of Gurupura River and natural mangrove ecosystem of Shambhavi River in Dakshina Kannada, India. Marine Pollution Bulletin, 176, Article 113450.
61. Takagi, H. (2018). Long-Term Design of Mangrove Landfills as an Effective Tide Attenuator under Relative Sea-Level Rise. Sustainability, 10(4), 1045.
62. Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M., Ysebaert, T., & De Vriend, H. J. (2013). Ecosystem-based coastal defence in the face of global change. Nature, 504(7478), 79-83.
63. Valentine, P. C. (2019). Sediment classification and the characterization, identification, and mapping of geologic substrates for the glaciated Gulf of Maine seabed and other terrains, providing a physical framework for ecological research and seabed management [Report](2019-5073). (Scientific Investigations Report, Issue. U. S. G. Survey.
64. Walters, B. B., Rönnbäck, P., Kovacs, J. M., Crona, B., Hussain, S. A., Badola, R., Primavera, J. H., Barbier, E., & Dahdouh-Guebas, F. (2008). Ethnobiology, socio-economics and management of mangrove forests: A review. Aquatic Botany, 89(2), 220-236.
65. Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. JOURNAL OF HYDRAULIC ENGINEERING, 129(2), 120-128.)
66. Wolf, P. R., & Dewitt, B. A. (2000). Elements of Photogrammetry with Applications in GIS.
67. Xie, D., Schwarz, C., Kleinhans, M. G., Zhou, Z., & van Maanen, B. (2022). Implications of Coastal Conditions and Sea-Level Rise on Mangrove Vulnerability: A Bio-Morphodynamic Modeling Study. Journal of Geophysical Research: Earth Surface, 127(3), e2021JF006301.
68. 內政部土地測量局. (2016). e-GPS衛星定位基準站即時動態定位系統VBS-RTK定位測試成果報告.
69. 桃園市政府. (2023). 觀新藻礁生態系野生動物保護區之碳匯功能評估暨紅樹林適度疏伐計畫-期末報告.
70. 桃園縣政府. (2014). 桃園藻礁委託研究案.
71. 郭重言、林立青、藍文浩、莊文傑、李俊穎. (2017). 臺灣海域海平面上升之加速特性研究.
72. 陳柏智. (2020). 基於自然解決方案之都市河川洪氾平原管理—以二重疏洪道為例.
73. 經濟部水利署. (2012). 「易淹水地區水患治理計畫第 2 階段實施計畫」縣管河川新屋溪水系規劃.
74. 詹勳全, 邱亮鈞, 彭振捷, 張承遠, & 郭炳榮. (2017). 應用二維水理輸砂模式評估野溪清疏成效之研究. 中華水土保持學報.
75. 薛美莉. (1995). 消失中的溼地森林—記臺灣的紅樹林.
76. 蘇永銘. (2012). 人工紅樹林濕地淨化海水養殖業廢水之可行性評估.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88273-
dc.description.abstract因溫室氣體濃度上升導致的氣候變遷在全球各地造成不同程度與類型的災害事件,紅樹林生態系除了具備吸碳、固碳、底床土壤累積碳含量等優異碳匯能力外,紅樹林濕地的地形抬昇特性有機會對抗海平面上升帶來的衝擊,包括海岸線退縮。本研究區域位於桃園市新屋溪河口,屬於紅樹林與藻礁生態複合共生系統,本研究假設紅樹林生態系統具備囚砂能力,是作為國土保育的重要生態工程策略,並可藉此降低排入下游藻礁生態系統的砂量及懸浮泥砂濃度,呼應近年國際間大力倡議之自然解方精神(nature-based solution, NbS)。
本研究進行地形、水位、流速等現地調查,包括UAV、壓力式水位計、都普勒流速剖面儀等,並收集水文、泥砂、空照圖資等歷史資料以建立數值模式並進行模式驗證;結果顯示,本研究建立的模式在常時水位驗證下具有非常良好的品質(NSE=0.9821)具備可信度,同時在高流量測試下所設置之結構物功能可在不影響模式水流分布下達成預設的阻力,而模式選用之適當輸砂公式透過模式建議之採用公式、歷年正射影像資料以及輸砂公式原理選定。另外,本研究進行9種情境之模擬分析:3種「25年重現期入流泥砂濃度」搭配3種「下游河口水位」條件;情境模擬結果顯示,入流泥砂濃度是影響濕地沖淤深度及範圍最大的因子,入流濃度提升淤積越多越廣,至於下游水位上升的影響程度相對而言屬較次要因子,研究也發現入流泥砂濃度提升至兩倍後對灘地整體高程變化為0.27 mm/yr,因未考量到紅樹林本身的生物堆積作用,故尚不足以達到平均海平面上升速率(2.35mm/yr),但紅樹林確實提供近岸藻礁生態系自然囚砂機制,而此固砂效益也展現其作為延緩國土流失自然解方的潛力。
zh_TW
dc.description.abstractClimate change caused by increased greenhouse gas concentrations has resulted in varying degrees and types of disasters worldwide. The mangrove ecosystem, in addition to its excellent carbon sequestration capacity, such as carbon absorption, fixation, and accumulation in the sediment, has been able to counteract the impacts of rising sea levels, including coastal erosion.
This study hypothesizes that the mangrove ecosystem has sediment-trapping capability, making it an essential ecological engineering strategy for land conservation. Reducing the sediment load and suspended sediment concentration entering the downstream algal reef ecosystem aligns with the spirit of nature-based solutions (NbS), which has been strongly advocated internationally in recent years.
The study area is located at the mouth of Xinwu River in Taoyuan City, with a complex symbiotic system of mangroves and algal reefs. We conducted field surveys on topography, water levels, and flow velocities using UAVs, pressure transducers, and ADCP. Historical data on hydrology, sediment, and aerial photographs were also collected and incorporated with the filed investigation to establish a numerical model and the relevant model validation. The results showed that the model developed in this study exhibited excellent quality (NSE=0.982) and reliability when validated against steady-state water levels. The structural elements installed for high-flow testing achieved the intended resistance without affecting the water flow distribution. The appropriate sediment transport formulas were selected based on the literature recommendations, historical orthophotos, and principles of sediment transport formulas.
Furthermore, the study conducted simulations for nine scenarios involving the 25y-return-period inflow sediment concentration combined with downstream water levels. The simulation results indicated that inflow sediment concentration was the most influential factor affecting wetland siltation depth and extent. As the inflow concentration increased, siltation became more extensive. The impact of downstream water level rise was relatively minor. The study also found that doubling the inflow sediment concentration resulted in an overall elevation change of 0.27 mm/yr in the intertidal zone. Although it is insufficient to meet the average rate of sea-level rise (2.35 mm/yr), the mangrove forest provides a natural sediment-trapping mechanism for nearshore algal reef ecosystems. The sediment retention benefits demonstrated its potential as a nature-based solution to mitigate the land loss caused by the increased inundation under rising sea levels.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:18:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:18:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究假說與目的 4
1.3 論文架構 4
第二章 文獻回顧 5
2.1 紅樹林介紹 5
2.2 紅樹林的固砂及對抗海平面上升潛力 6
2.3 紅樹林的碳匯及固碳能力 7
2.4 藻礁生態系統 8
2.5 自然解方 9
第三章 現地調查方法 11
3.1 地形調查 12
3.2 水文調查 15
3.3 河道與灘地底床調查 17
第四章 模式理論與設定 18
4.1 SRH-2D模式理論 19
4.1.1 水理相關方程式 19
4.1.2 結構物阻力計算 21
4.1.3 輸砂原理與相關方程式 22
4.2 SRH-2D模式設定 24
4.2.1 網格建置 24
4.2.2 底床參數設定 25
4.2.3 結構物設置 29
4.2.4 入出流邊界及土層厚度 30
4.2.5 輸砂公式選擇 30
第五章 結果與討論 32
5.1 現地調查成果 32
5.1.1 地形調查結果 32
5.1.2 水文調查結果 35
5.1.3 灘地調查成果 39
5.2 模式建立 40
5.2.1 模式條件設定 40
5.2.2 參數調整及模式驗證 45
第六章 情境設定與模擬分析 55
6.1 情境假設與邊界條件設定 55
6.1.1 25年重現期上游流量與泥砂濃度條件 55
6.1.2 下游水位條件 59
6.1.3 模式模擬最終參數設定 61
6.2 情境模擬成果 62
6.2.1 研究區域在原始條件下的模擬成果 62
6.2.2 九種情境模擬的參數統整與分析 71
6.3 討論 72
第七章 結論與建議 77
7.1 結論 77
7.2 建議 78
參考文獻 79
附件1 85
附件2 88
附件3 91
附件4 93
-
dc.language.isozh_TW-
dc.subject自然解方zh_TW
dc.subject藻礁zh_TW
dc.subject國土保育zh_TW
dc.subject紅樹林zh_TW
dc.subject固砂zh_TW
dc.subject海平面上升zh_TW
dc.subjectAlgal reefen
dc.subjectLand conservationen
dc.subjectSea level riseen
dc.subjectSediment trapen
dc.subjectMangroveen
dc.subjectNature-based solutionen
dc.title紅樹林作為國土保育自然解方之潛力評估zh_TW
dc.titleMangrove ecosystems as potential nature-based solutions in enhancing sediment trap efficiency against coastal erosionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee游景雲;胡明哲zh_TW
dc.contributor.oralexamcommitteeJIING-YUN YOU;MING-CHE HUen
dc.subject.keyword紅樹林,固砂,國土保育,海平面上升,藻礁,自然解方,zh_TW
dc.subject.keywordMangrove,Algal reef,Sediment trap,Land conservation,Sea level rise,Nature-based solution,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202301947-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-25-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf14.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved