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Abstract

Climate change caused by increased greenhouse gas concentrations has resulted in
varying degrees and types of disasters worldwide. The mangrove ecosystem, in addition
to its excellent carbon sequestration capacity, such as carbon absorption, fixation, and
accumulation in the sediment, has been able to counteract the impacts of rising sea levels,
including coastal erosion.

This study hypothesizes that the mangrove ecosystem has sediment-trapping
capability, making it an essential ecological engineering strategy for land conservation.
Reducing the sediment load and suspended sediment concentration entering the
downstream algal reef ecosystem aligns with the spirit of nature-based solutions (NbS),
which has been strongly advocated internationally in recent years.

The study area is located at the mouth of Xinwu River in Taoyuan City, with a
complex symbiotic system of mangroves and algal reefs. We conducted field surveys on
topography, water levels, and flow velocities using UAVs, pressure transducers, and
ADCEP. Historical data on hydrology, sediment, and aerial photographs were also collected
and incorporated with the filed investigation to establish a numerical model and the
relevant model validation. The results showed that the model developed in this study
exhibited excellent quality (NSE=0.982) and reliability when validated against steady-
state water levels. The structural elements installed for high-flow testing achieved the
intended resistance without affecting the water flow distribution. The appropriate
sediment transport formulas were selected based on the literature recommendations,
historical orthophotos, and principles of sediment transport formulas.

Furthermore, the study conducted simulations for nine scenarios involving the 25y-
return-period inflow sediment concentration combined with downstream water levels.

The simulation results indicated that inflow sediment concentration was the most
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doi:10.6342/NTU202301947



influential factor affecting wetland siltation depth and extent. As the inflow concentration
increased, siltation became more extensive. The impact of downstream water level rise
was relatively minor. The study also found that doubling the inflow sediment
concentration resulted in an overall elevation change of 0.27 mm/yr in the intertidal zone.
Although it is insufficient to meet the average rate of sea-level rise (2.35 mm/yr), the
mangrove forest provides a natural sediment-trapping mechanism for nearshore algal reef
ecosystems. The sediment retention benefits demonstrated its potential as a nature-based
solution to mitigate the land loss caused by the increased inundation under rising sea

levels.

Keywords: Mangrove, Algal reef, Sediment trap, Land conservation, Sea level rise,

Nature-based solution
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FHEMTA Q014D APFP * RTRI AT hEDEERL B8P K

B @RTEET R A B BER (B BHE) hF - ERPELHE]
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AASFVREBTEREZL ARE -ed P - filid - &nhr 2Rl
PR ARG A A T bE I e LT R TR e e 2
PG FHEVBERE AR LIRS Y BTRGFET o

oL WA A SRR EE > A5 3Lk R 4 - i (biotic reef)
R B RP P R S RS B kP B 2RAT 2 XA R E MRS LD
R ETEH Vs §F BT 2 SR G FihkEs TRE TR
Hpl oA B p RBRB Y AL TEHEEIRESE FEHLIIIR AN AT L O
IR B RaRRIT SRR ORE AR AR R BRAKS
5 At £ N2 B (PREA 2014) - § ¢ Tl ARTA S E A

J\m %iiﬁ’-’@-“\)ﬂf?xi T _;"E_h“/\ 7 &z"cb RO g?ﬂb ‘5‘1*?* EEE’F,@"‘* °

7
25 f #jz-

p #X f#> (Nature-Based Solution; NbS)E_P w0 &t & p AR ¥ L3 5 £ Hiek
(Ruangpan et al., 2020)> ¢t #£ 4 >+ 2008 & d £ 42{7 (World Bank)# ! (MacKinnon
et al., 2008) » E " p R % 5% B’ (International Union for Conservation of Nature,
IUCN)#-H % &% 5 T 2 i e dtAk § 34> P ik i Ll alfrd 4 5 R id

PeE o ARTAKE AR A s nd [k SR RS R ) FEY 8

“1\\-

SNFEELI AR EUEREM LT RGO ONDS KR T2 E X P @

>.

FHEE 2 FERB S RE 2 AR XD hE A oA R
Eirtadph ikt o

Liao et al. (2017)4& 41 7 NbS e 22 g & 7 7 /K F & JZ (water quality
treatment) ~ & ax FjE ~ 0P 4 g 5 R i 0 2 > it PRG3R (cultural services)4r ik
BEZF -RKTERBET > "VREAGERET EOE R o Bdeo A& ki

Bl 32 o R a2 & ¥ 2% & (Dietz & Clausen, 2005) > 2 fa i § H ~ &2 4

1RMERV RRAR G S EAHE &K BAEEEG T 77 202 (Al-Rubaei
etal.,2014; Herbetal.,2009) ~ & £ 8 ¥ pd@ e > 11} 3 f bkl o
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KR TRRER AT € RE- LT R AT EF] TR TR TR e R
RAFEAL 24 > @@ e B P 0F L H X 2R p % (natural carbon sink)# it
2P A G AR Bt S OERRRY NDS fof B RiEB P FLF
= 2 (Seddon et al., 2021) °
pL ek 22 NbS PEA 4P g L IT# & & jprdh & & 35 W 6 B 3¢ (Low Impact
Developments, LIDs) ~ # i& & 324 %5 (Best Management Practices, BMPs) ~ K 57
M35 2% 3+ (Water Sensitive Urban Design, WSUD) ~ A 4 ¥ Pk $e(Sustainable
Urban Drainage Systems, SuDS) ~ 2 fx /& "% ¢ £ h *& (Ecosystem-based Disaster Risk

Reduction, Eco-DDR) > H # e B8 2 4 G LT b ' b o B4 AR

xro;r.:ag/gj TEGPORABEF muEBFOEAT R Lo HiEEEA T
EivEE A2 G oriER o YA R P SR ke R Bk R %

B NSHE A K IEF SR % % ST B g e i 8 2t 8 0 ph vy
FAE T B PR P e R MR BT e gl R A
LR A RFE LT RELRRAP R L AR XD I L AR AR

it RRRERT R BT R A RMEFFR R ALY IR R Rk

[

oK EER R RETAER A A HE B HUE R % (Renaud etal., 2013)
BT > 7 MAR S AR EIRE A0 BER o % (Temmermanetal., 2013) ~
T FER KR ILEE BT b % (Murti & Buyck, 2014) » & %5 4 1 &=
BHEE § Pk B 2 fakiE Eanfoek K% 1007 3 2 hB B A SRR 1

Sedod B4R R M ¥PUS T g A s 0 (Takagi, 2018) -

FEmw MY P IRAF TR F A E AR T RER TG
FASRIETAZOSP I AR B SRR PR T R

li

PR R X

- \“\

S E Y PR S T T R R

4 fh ALK E B RS b BT e ETAL € AR
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B E A RBERS R 0 LR T L AFRIEY 840m ~ P T L e
TAE L 180mfr 70m -~ B A TR G A 0137 T2 22 o ZTRIERIHEIRE
PR ERT CEARRFAATRET RIS JHBRFLT LR FENFY
B BEOLARRERIQEEELRY AT RN AL FRPETA L
BAAL SR ANE PE AN RAFB L FED A REACeR 3.1 w0 K
AL SRR WP AT TR THRREOIPED AW 2
AR EEAVRFL ERP IR LG I TR GF TRE R
ATE R RG] e AR NeHEL T (BE R kAR E T ) (L
FRFIE > 2012) 2 AR EFLRGF - 2en T BRATREL L H 4

Bede BRRE W 2 A R TR Rer 83 ) (FYEFS sR 0 2023)

FREH F1EH F ik FEEB W

ST RN G5 ———————  VBSRIK

LPS
|
} st gy MR B E R # AT T
| j L

VBS-RTK

—

WEE ———-{ GCPs

- 1.8 3R R . b s
| B KA ———‘\lﬁﬁii%l.%’&g]f?ﬁfﬂ.% — | &gk TFHsB.C
AXTH p—— e’
| I iR —% ADCP ———— FRAERALNHBC
——{ BEsEEEE B ROBXERRME

(i‘m.
B

ST AL 4
e e e 4
TE BRI < ——
e SRR A 4< AeE  ———— B EEEBRHE

B3I FHEEEMEAETD 2 2
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31 ¥ 4

I E ] et 53 B 2 5 3 % iE (Airborne LiDAR) ~ fiFk # 8 - & 4 4
% §* % (Unmanned Aerial Vehicle, UAV) & 2] % - 2 §* 2 J5d 1 & 38 § 45 45 7

BE s e o GPS RE » K&K RBF E NI F L L P NFFERFF L Z &

i A A Meny AR f B RS 0 ¥ @ TR R 2 (Point Cloud)™ 3% & IR -

W
ol
W
R
&
g
7
¥
R
It
=
¥
|

A FIFENY B RBAPN BITTHRLE Eg
e A AT L AT BT PR LIRSS D T
FEFR o RREEJREL T BF T EF N E UAV Jﬁﬂ—&ﬂ’* T F L DER
R REREC SRR R REFRD X G R
e RN e 2 HCA(DSM) > 3 F LR L ERFRIZFRER G B RS
TREERERRK TRENE AR E N T AR

kIEz ﬂi%]l/) B R AT 3 e A5 T4 7 e~ #ici® F 42107 (Digital Elevation
Model, DEM)m 2t i 3+ % #-73](Digital Surface Model, DSM) » DSM £ DEM =1
U5 AT IERE I LFAETH FREN e FEAPF L IMHAR
e SR E O S SRR S S RIPEIECNRE SN ES R E R B e
BN FAY o TP if & ROEK R ALK 18 (7 ¢k 15 2 DEM o

TEREN-E R IR N TR SR P S (IR s T A
PHEAMIE FREF RS EARELFRRE T AR R AT
EEr FAMAG EFTRE LS AR A LR R B A A B B2
3 (Chen et al., 2023; Shih et al., 2023) » F]gt t4 144 & E %) % 11 2 jo i T 1 )
*ﬁ d £ 3N T T R A AL RS g 2 i B (Virtual Base
Station Real-Time Kinematic, VBS-RTK):& {7 £ if] » d ** =gk % B 754 € 3&*}?}
A X A S gL AT R ¥ i F (Levelling Pipe System, LPS)ig 7 s 3

AR ARR 1 BRI E o KB T ARE i BB R 1 R 2 B 4
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BASRZPEEPROPGE T2 FRBRIIREF R BRI E D E
RC A - L ;ﬁd ¥ % %47 & (Ground Surface Distance, GSD) 2 3% (3% 3.1)
FRERG ERGFHEIN DM F2 G R e w R TR o
UAV LR G e X g TXRPE RERPETHY D2 b2 Lt
EF AR PRBENER T %%E’ £ A3 4758 (Wolf & Dewitt, 2000)d#
NPT RBG P ENRE NI RI[EL IERDTANIEERT
H|gher 47 > & %~ Pix4Dmapper # e & #4124 @ DSM o

GSD=H*£ (¥ 3.1)

my (X — X)) +mp, (Y =Y, )my3(Z - Z))

X—X
° [m31(X = X1) + mg (Y — Y )ms3(Z — ZL)] (£32)
X .
y—y [m21(X = X1) + my (Y — Y )mps(Z — ZL)]
° M1 (X — Xp) + map (Y = Y )ms3(Z — Z,)
#e o,
X,y = - mifiE
X0, Yo R UEe X2
XY, Z = bRz Ak
XLPYLIZL = é%ﬁaé '\"4’;’::'/*%'—_
f = EiE
My ~M33 = B> mdlea2 33 EELIBAF
SRR § AT 0 INA AT K BINA BT R A A

#4240 b £ DSM 4otk B8t DEM > 7 8 247 § (SR 4 A 2 DSM 24
CRHIEL AT LG RR AR GELEF I RTORG FUME AU
BALMFE R A GRIDRE > e T PEE o

@ % R RIR K SLPS) 1YL ERE S RAD O Pk A2 %

BT f® drdedn gl B AiRis > W E N E plETe oo AR AT T
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IR BT AR TR B e & G R TR & R 2 AT

Fergdt G Rl R R B AL AL 0 ARl S 2 4 NTU B4 % (Shih, 2020) o

H = |Hy — Hy| (54 33)
He
Hy, H, = &3 ¥ 3 B (cm)
AH = A E2E FRAELE (cm)

Transparent acrylic tubes

Transparent acrylic tubes

Free-water surface

|

H,

Valve

Nl

AH

0y
([ vttt

Connecting hose

F L kR : Spatial Habitat Suitability Models of Mangroves with Kandelia obovata (Shih, 2020)

W 3.2LPS il ¢ A ¥ 7 & W

VBS-RTK ek 238 (T RIZ & i fg £ 5§ ¢ wHTFE RS B GPS At
PREETRZE T @R E R o § RAIRFE LR TRET A
BAOTHEERFRRGBIE T o § RELRIE T L m A R (VBS) 2
Bo R TR e F LA RS ER G ALK RO & 52
PHGAFLFL ZCFHABFZ L AN AR T A SN EF SRR

TR RN AIFATR Y AT HAES S0 L8 F(P RS = RIE 5 2016)-
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32 -k*A 4
TR T R OFE R BT
Pleb o IR

SRR L R
Eﬂ;;gy\ )I$ 1= b""%ﬁ-“mrlﬁ Eﬂ’ i

oo ﬁ*?fﬁ:ﬁ%‘ﬁjl;&*
“K B AR ELPIRE o 5T B’n’
FRTH AT LR 4
PRz B ARG 3R 2k - R .
B A A

‘:‘:—L;\l @J ;:‘;J-E’:
—‘J.—\@J )J""é&?‘%%@%lb y AN
B33 ERAGFTH

(R B

%ﬁl*ﬂ_/@v\#g}

[ 4]

DRI R P up)
* BEEUK AP mid)
W A5

*

JEFK (i HP_downl)
B P downR)

>

TRBART

= ADCPEJIE 4]

OO sk
' 0 75 150 m
B33 k>3 aA+H
22 ;L“ i *iEEp 3

LR A G E e Ep R R A R R T
e A — PR SRR B A R A KR T AL R
BRRIEE B
T

T B 18
= L S
STBLP| B K R AR P RVRA ok ide o

I
2, "

Hyy=Hg+ ——=

e

70 4o (34 3.4 97
Py-Fy

PE
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Nud
ArS

Hy,, = -k {=(m)

H, = » % 3 42(m)

Py = k¥ piE R4 RS E(mba)
Py = ZF ¢ peRAIRA E(mba)
p = 'k % & (kgm?

g = £ 4 41 B(9.8ms?)

PR AR ARE - FRERRAGERFRTENAFTREM AT S
Mgl R A 2R EOR I ELRIER G R FOR o H Ak i BLRIR 4 2R A W JE 2K
AT 2P (PtLup) ~ BT A5 170 2 & Rk FePt_mid) » 2 %
THL LA Rk L %% - 4 (Pt downL&R) o & Bk BLIRIR 4 3 B AR
2ELPIBER AR AR DAL FHERE- H R
MG R F g R4 A5 S Onset HOBO U20L > 5 & fF &
GCEMTAEFF R F OB RRE PR ITRS B BR BEHE
doF etk it e o AR P ENRA 2 R PB R SRRk T ER

B AFBEP - ¢ TFEF L RN P2 E PVC F o gt F

g
E]
F}-

frt.
R
=K

R R KT ORI N AR RE R
b EETe X P R 0 R B R 240 aE 3] 5 R (Acoustic Doppler

Current Profile, ADCP)#-#-jd o T 2 &+ 8 | T 2edk 3 o H4f F en% it 1R JERRP K

R ;ﬁtbﬁa P BRI L e o L7 (B arie i T
t T IRV o RemRpE L B R BEFTE IR HRE kP e B

—

. 4 a2 BRI A DI
g FIPE TR T AN e
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33 Py itk AEH A

2,

T 2 PRITIRIRN AT Y Bkt R R WA o i e

T i R BR) BIR) S o Srak i ¢ i Lﬁ@ﬁﬁﬁu

BRI ARORRS S LR F R A L F R A 44%ﬂ§’
R I R R B D T R o B 0 L SR AP A AL
B OERAE BRI SRR B 34 S ARTEAE L

AN I
N

LEBEEMNE B K (m)

a 0.24
b 0.61
c 0.78
d 1.30
& 151
¢ LRAEENL
w— | PSEF @0 |
—— LPSHEf @2
—— LPSKf @3
@ Tl AL
O sxeEs
0 125 250n
[ —

B34 PEARERDELEME IEEERD L LT H
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Fri HAZHERT
ALY SBEARCRTE & 2 R R 5 (USBR)X B 4 cho MR
#ji-7% SRH-2D (Sedimentation and River Hydraulics)i& {7 -k 32 2 ii%] Fitiikt o £ 8
PHEE R FLG (1) 2 HERS B R RRE R ORI RS R LG B
Bfcacl? $ %748 b @ FR - h £ ERPPE ISl e 4§
Bt kb)) ¥ g FE H R M R L RS TR RRE (2) SRH-2D
FEAHIFFRRERER D - KE A RRPREY 82 KRG TR T
B RREERRE R H gt 124 (form drag) © M BT AT B
BTSRRI R E R B AR AE BEERES S (3T P A
FERLA iy 152 (3 AR TERBLZE L TR R *.%Jr*“i*ra’%]%f
By A gh @ Lw Ti52 - .f‘:aﬁig?llfﬂs’?;‘ SR EAYE ko
& SRH-2D ¥ »-kIZiE it Ajmig 1 2 X907 P02 P v @i 305 32 8 7 48
Tolzar RS T AR ’J‘ﬁﬁﬁF’“w‘eﬁ'}}?\Pﬁ%ﬁ#?"%ﬁ.%é—ﬁ#%iéﬁﬁf%i’ﬁé&ﬁ?
BV R R AR S e 2 - R ERCT S ARCT R
BV HEATALTHRFORRE  FTHEHIPMIEEFTLe AR T LTI BRASA
* oo R B S RRITIRIR o
SRH-2D #5% ¢ 2 = Figisr cnst it ¥ L e B PG B 42 e 4 78 i 5

R ERE S ETH S LA R T % f M e 8 ki 7

-

- H PR AT R R AR B AR T 2P R BRI 2
R CAHRRE TR B IV SRR TS SRR e Bk & T
FI% Bk B A TABEE B KRN R R R(E ® o0 EE RS G
B CoR B F %7 R A LRFLHROIRAREE S Pl kit A
TR RS R A 2 U R 2 S R OR
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4.1 SRH-2D #5433

1 4 GG SRH-2D -RIZ AR (Lai, 2008) ~ B4 4 F 3t 5 (Lai & Sixta,

2016)14 = $37) Bk (Lai et al., 2020) L 4 § 2 safir 423 -

411 RIZApBE > fE5

SRH H77% 3k K i AR $Hy chp B H o8 = 5 P Ak £vk eh 0 gokindy
#4235 #-= & Navier-Stokes = A2V i (Fw T35 JEE TIFER - 4> 47
FU 0 X f£= ‘& Saint-Venant > 4% > 4o #fop

oh N d(hU) N d(hV) _ 0

ot ox dy
0(hU)  0(hUU)  9(hVU)
0(zp +h)  0(hTix) a(thy) 0(Tpy) (5% 4.1)
—gh + + _
0x 0x ay ap
o(hv)  o(hUV)  9(AVY)
ot 0x dy
_ 0(zy+h) 0(hT.,) 0(hT,y,) 0(tny)
—gh + + _
9y 0x dy ap
e,
t = FE h = RiF
g = &4 vk B Zp :%H‘rgﬁfﬁ
p = KWRAE
u-v = RiFT e
Txx
Ty = % R A aviiRT et i
Tyy
19
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BT A R B ARSI TIE o 4 (142977 0 0 2 TR
B A RS R R B k() FEIIRARLE A B S ET
Medr B B (ko)™ 2 R R RUT B AR > T SRR B Rlk(ng)F A

TP RfE

(Toxr Toy) = pC UZ + V2(U,V) (5442)

2e
G = gnt / 15 ne = |ng+ng
1
- kS ke = 7,000
8.1,/g
ng = %% ®niE ng — REE®nE
K CAREENE ke = § rcpdkd R
Tg LE S

F ¥ 4 E499% Boussinesq * AR5V E T RE o 4o AT

au
Tyx = 2(17 + vt)a

5)4
Tyy =2 + Vt)@ (5£43)

av

au
Ty =2+ vt)(a + Ix

v = Rz # 3R Tk v, = FRR AR ik
TR SR R 3 SRR TS AN R k- B RTS8
(Rodi, 1993) » % K3+ = & v, = CUh > ¥#C,7 £ 03 3 1.0 %8 > & U, 1
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FAKBEER ML R FR TIPSR 0 TRV I FIFKEOT -

412  Bipped
AET B SR E B G R e (5% 44 977 > SRH2D T ki@ *
TR TR RN SR R R e 3 & L A
Yol - MR ENRE Y T ARG Y R USRI R R S iR
RN RSN RS PSSR L F L SRR B
B AR AR ke AT F ) - B FRE 0 F AR R
LTl HFERIRE E DG PR AR RVDFR
S E RS RS BAT Y 2 F S AL S 2 R Rl

\\

o

B (38447 Ty 0 (AL Ak SRS F RIS PR % R B ek

SLiR e AT B R RIS S P kI B R x g eh

=

Py o R B R AR LR ROLIR ) R SRR B

1
Fq = ECdP(UZ +V?)BAp

4.4
84, ( )

Zi=all _obstruction_cells Ai

= +EC Uz +v?
Ttotal = Tp ) ap( )

2,
F, = e d Cy = jed (& a)
B = I % T = B
Ap = kiR R R R (kT )
B0 f
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% 4.1 SRH-2D 7 I St $ o2 124 1 3(Cy)

S A P4 d(Cy)
WE e ¥ 7 L TR R 0.38
S ENEE 2 0.42
5 i 0.5
LR 0.8
i 1.1
R4 88 1.0-1.3
e ? %L FLA 1.2
413 fF)RILEARH 2 A2

AR 702 R Rl e P SR BUE 5 G SANEV R LRBLE e
BT BRI DR F ik R R R S A N 3% B B A
%%%éiﬁ%’ﬁi’ﬁ&ﬂ%ﬁ%“4g%ﬁﬁ%§4§%ﬁw$ﬁﬁ%o
—HFRT O EERA R ke R AR AR T e B HBAEFTE > e
B 4.1 #77 ¢

1. ,3—? & (Suspended) @ %45+ R P R R BRI R f;iggigl o

2. #a# & (Bedload) : £k M HRIT A G T o RRIRILES S

LA T S ;“iif?@ﬁ%] o
3. F#E(Active): R HE A G 0 BEFRMET 2 ALK R I o
4. =& % K (Subsurface) : =3t EHE T S 0 2 X IR AER kT Y

jedkr e EO(5) K ik FRERRT o
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water
surface

exchange between

F 4 &R : SRH-2D User's Manual: Sediment Transport and Mobile-Bed Modeling (Lai et al., 2020)

) 4.1 SRH-2D % [ $5%) 7 5 & & i 2 & 7 L Bl

SRH-2D mi&ﬁa?]?'/i\ ¢ FRFP B X4 * Greimann et al. (2008)F#
A1 ezt T f;f'ﬁ%]/?) = ;% (variable-load approach) » i & A #0357 S REIT IR R
PREBEARAFRT PRECT 23 EFE A ARPELAFT S RER PR
T35 e A % o (Vog) * Bk A B S ARk d T AT R R
i Akt 1R

ath 0 COS(ak)BkVtth d Sin(a’k)ﬁkVtth
+ +
at 0x dy

—a(h Dack) a(h D aC)+5

(54 45)

He o kv A ¢ R CAIRRE TR FER 0 Be = Viear/Ve & iF
Py R gt Rt 0 Ve = VUZHVERR S 3050 d  ap ABE) S v 4
HX phend b f AR TS SR AR 6] (0 R AR 1 AR
FE) DefeDy Bl G x By B P RRR £ Tl S UK BB R BR F) e
2 F o
ipfﬁ@ﬁﬁﬁ?ﬁﬁ@wﬁﬁmiw%%@uf%&w@vaﬁ£§~

FEAERE TS AT G ARE R AR 2F L Q017 T S0
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Bt pg2i el L rpm ) B AR Bk R R R R T LG B2 G HERE
ﬁﬁéﬁiﬁﬁﬂ%iﬁﬁfﬁ@@ﬁﬁ%’ﬂ?§1*¢%%*ﬁwﬁ%@ﬁ
I 755 2k A5(bed forms) 2. §EdE o 3 SRH-2D £ P 234 > 27 % i%—iéﬁa?lﬁi i
BAGERKE FE ) E (G4t 1B-6) 0 F 2 PR35 A& 2 8 * 2 73K
TRLPHERKES IS BAOPE R A T RPEREYES LR SN
(Phillips & Sutherland, 1989) -
@%ﬁﬁﬁﬁ%’«mmgﬁﬁﬁ%&ﬁﬁgﬁﬁ%’%ﬁﬁiﬁ&%Wﬁ
KEBEFIFENRE FEFT RS & F GcE 302 %ﬁ%llo fe AP adERolekER
A2 Y st (420 Wiy ) A F PR AR REARH o Flet s L R
RAEGRERIAPFHREDDES -3 70 S RIS R B L PFERRET 1 5]
3B ey FIF R REY 5T 14 Bendgy o SRIBEG A ERLE P RS L TG

Bt KD RO R AL £
4.2 SRH-2D #54 % %

A2 E R HE ENFFD RS RATRIEN A 3 f%&*i%iﬁﬁl’zii—
SRH-2D B PR 64 1482 P PR EBIAE - R EF HRBERZAKFL
niE s R CAHRA A1 2 RS AR 2 R ER R 2 R I B S
BRpfigpms® (Fa RE2ERMNRTHA ) W2 gF2mpas (F5
Kk

421 @ gHaEy

SRH-2D /f & * SMS # 88 (7 e 5hid » 7 195 S LR N B3 B 12
Bt FPFSMS RFHGIPN RS 22 2752w 3 AR I F AP R
T ERB N BRERED AR R T REBA R BRAOE AU REFT P
FOAEERE S 2~10 2% > RESGVEIR S AR R L Ao mats BT R R o

L AIE R R R L R B A R A g s A SN B R e
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APERERGLORKRE- IR ERE N4 0 B E_/PIEJP—L’}%-
> \‘ P#'/ut "*ﬁ'/n“ L uﬁﬁa 5] 'EE‘_&I"?&’RE-’:L‘ /ﬁlgjﬁ%?v

%ﬁﬂgﬂimm&mﬁ%i% FI P ]IS 2 % p R E 4
—Hm HARNER L 610 2% B B8 iﬁ\%ﬁuﬁﬁﬁéfkéﬁ’
TR IIT R L L B PR R RORT I TR R R R BT T

200 2 ¢y GRIET FE R hAE 200 2T A §HE Y REP kA2

A

B
pd

NN

Bo b BRpREYE L 5B 42 977 > £ 5 8718 WAL L E 6660 i & 8L o

AN

477
Bl42 B etz s £ % (s »# 5 DEM %)

422 KRR FER T

kR SR A SRR Y B0 R R RS R PRE S 304
FARERRAR AT o4 R PR ook o 2 S R RO AR T
BRI R OF S o P RN TG e ARG L T (CEAURE
2012) & ¥ P55 RIS - AR R BE(CO2) > B4k * B 5.8 (=) C02 et it~

A 2R TR
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ARG 0 ER AR L ERRE A BRBENPRR P P TR AR

AZFHEMRELTHARENE PELRA ZF AT A7 R ERIE(ds)
EBAL LImm; FERETRE R ERSY P AF ISm e TSN R L 45m >
FTOLMERNE 43 Tm; PEIHERBRAICE - L P » w9 T EE

RERSPAERE PRI AP EE P L BRES A BB P i st

AT LTS B AR RIS P T NS HP R SRR RS
Flet P o KR & B on B S BcR T HA GRS LB 5 0.030~0.035 5
FrRRE®RS G EFERE D HP H L2 o L FRA 3T M0 £ UG

20.040~0.045 2+ > F i P BHERFRI G 0 E L 0,035

% 42 7 F iy K HBORE FEE LT ?%&L*Fiz B nE

m A P FERAR P faw
dsp » 1.1mm @ B A3 30~45m dso 1 %t 1.1~2.1mm -~
4 T AL # % i *t 15~20m
1 43 Ao F) B AeF)
] n & 0.026~0.035 ] n & 0.026~0.035
2 44 - - B2
0.030-0.035-0.040
FBal:
545 0.025-0.03-0.035 B B
FB al:
0.030-0.035-0.050
2 FHED LR +E+T L
LR o i g
% 4.6 — n 4 —
0.04-0.045-0.049

EriRe%k o AKRE B0 BT AT
0.030-0.035 0.040~0.045 0.035

e
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7 43 B ¢ BRI (dso) B E ] & % n & (Benson & Dalrymple, 1967)

: T A i

RE (cam) (23355 8)

P, — 0.012~0.018

0.2/0.3/ 0.012/0.017/

. 0.4/0.5/ 0.020/0.022/

0.6/0.8/ 0.023/0.025/

1.0 0.026

R R 4 — 0.025~0.032

iy 1-2 0.026~0.035

T 2-64 0.028~0.035

iy = 64-256 0.030~0.050

S > >256 0.040~0.070

*

DmEdol n BB TR N ETRR R 0 T e RV R R

# 44 % RO EBE (Cke 503 30.48m) 2 3E &k n 2 (Chow, 1959)

BiE 2 i B8 - & L
1. ‘in‘}ﬁ’ L R £ ok & 0.025 0.030 0.033
2. B PR Y 0.030 0.035 0.040
3. ‘in‘}ﬁ’ B o B JE i A1 5 9 i o 0.033 0.040 0.045
4, 1 ey i 2 B e £ OB 0.035 0.045 0.050

oo RIERGE P REE ST

- v = e s 0.040 0.048 0.055
w PR S
B4k 0 2y A S 0.045 0.050 0.060
d PR 0 B R 3 IFE 0.050 0.070 0.080
¥y aebo@ b iRE % F AR A

. 0.075 0.100 0.150
A K
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% 45 KT RE B n @3 £ (Chow, 1959)

#ok T RS A Bl & - RAE
oo mia
12y 0.025 0.030 0.035
2.3 % 0.030 0.035 0.050
#He
LA 3 A F; 0.020 0.030 0.040
2.8 B EFA 0.025 0.035 0.045
3. ®BiEA£ 0.030 0.040 0.050
EE A
Lffsn > 5303 0.035 0.050 0.070
2.3 %0 A FHR 0.035 0.050 0.060
3.2 % R TR 0.040 0.060 0.080
45% 0 2 FHR 0.045 0.070 0.110
SRR ERER 0.070 0.100 0.160
HHA
1T fn ¥ S TE 0.030 0.040 0.050
2. b o SEA S ATH 0.050 0.060 0.080
3.BAR o AT LS o E Rk ART 0.080 0.100 0.120
4.F F o Rk i 2 HH 0.100 0.120 0.160
5.8 zehdAr > § F R 0.110 0.150 0.200
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% 4.6 Big & % n @3 FiE R4 (Cowan, 1956)
Pip iR n B3 &

EE 0.020
S 4 F 0.025
KLy 0.024
e @ 7. 0.028
T 0.000
S Viq 0.001~0.005
¥ 0.006~0.010
&3 A 0.011~0.020
2 0.000
YT L LA 0.001~0.005
Gk A R 0.010~0.015
AL 0.000~0.004
T Vs 0.005~0.015
Ry 0.020~0.030
&5 0.040~0.060
(=2 0.002~0.010
- ¥ 0.010~0.025
B = 0.025~0.050
B~ 0.050~0.100
B 1.000
LaE AR B Ry 1.150
Y 1.300

423  BHFEE

HESIEEE & K 8 ik QSRS ab gl FUDAS g LR R A
AEBRCEA N EER LT EREEFEERLPERS 4] ST
FHEAET L EARE -RREBE F MR ERT KL et PR
B RS TR PR RSB FIRF A AL [ A1
dop T R A g B EALRE B ntEd b 0 kot B AR AT (2020)
SR Y RIS R AR P EERE TRk B R D SN

L kR ha $ S

2
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d 3 SRH-2D 72 & AGE ®#nERBFPIFHAH g2 & B i A7 F R
M T T BN o BHRRE S S8R TR st SRHA2D shB b b d R
VRO BRYES  LRRT R RS LB FFRAL R AT BEE AT
TEfp o T AF Y ARESHESFP UT LA AR A e 2 ¢ A
SRR PR R A P EF RN REZ 2R TR A i B
FTROFT BT R RS RFALTRERE FIRB IR LA §BF

SSTALRNE S - ELE S ST EELE- S AVEIE S E Ak i SR ) S

424  rdindg Rz A EER
AL R TP R R R AR T TR R R R i
B DTSN AR A R AR R RN SR ERDE S LR K

TEDAESEINS52 Y TS FEmEP o

4.2.5

ﬁ&t

BAaNEs
& 13.2 4260 SRH-2D ™ B % cfig) 5% 002 B 25V % AR A

B R Ao d 47 St 0 AR L

~

D% S o < ﬁ-ﬁ*;}ﬁ; P AR K R 3 ERT R R
USGS (2019)4 #g ¢ 7 - L e F 278 % » 3B SRH-2D # # (Lai et al., 2020):&
RGO TR mﬁiyl/?/ 2 743 = : Parker (1990) ~ Wilcock and Crowe (2003)f= Wu
etal. (2000) » A7 3 F *h Hi3sesg * *v#) B P B 0 Engelund-Hansen(1972) » £ i *
*t 3% 7.7 Jk ¢r modified Meyer-Peter-Muller(2006) » & L% &7 f8 @JE" SR g

BT A S P AR B S22 8 RRERES FEREE 2 %l/' D5
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% 4.7 SRH-2D @?]/?} SRZHg e R

e AT S R iR WiF) o 5
Engelund-Hansen (1972)
®) R I 0.06mm~2mm Wu et al. (2000a)
Yang (1973, 1979)
Parker (1990)
wE AR 0.06mm~60mm Wilcock and Crowe (2003)

Wu et al. (2000a)

modified Meyer-Peter-Muller (2006)
Parker (1990)
BE PR 2mm~60mm Wilcock and Crowe (2003)
Wu et al. (2000a)
Yang (1973, 1979)
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¥

2 A5 &

g L14c

$IF 2585
51 meBha+ %

511 #BALE

AR TR Y T AL SRR S AR S A S R Y
#4 Pix4Dmapper 1A ® 2. > % & 548 12 DSM 4@ 5.2 2§ 5.3 #7104
FERBAY KT FARMREI AEI I d AR EEHME AN 35m

22%»?%@&%3?#%%?%%%%3ﬁﬁﬁw’F%?ﬂﬁ%iﬁﬂ%

EE FHAFRRBARGL 928 Bt G FATHIRIHF S L9
BER3IFENR v @2 Fl 2@ 4 A FEL RS3- FF 2

S DSMAES § & 10T H AR L (B e W A AT A ¢

SRR e A F 0 Y 2 AL S F = 0F LPS FARAE (7 A IRE R

"

ABLEAR ST F 23 32 ieFo R FAAER M2 iE LPS s =
& 2) \ 462 (Triangulated Irregular Network, TIN)P~ {8 =[] p ez s 3 4 %
Lo AL REBEN SRS A F RS DSM i > 87 kB DSM
Fé‘*f,%:}r“ﬁ? CAER A g 3] DEM > 5 b b BB 1 T E R F e 2 4 g A2

IR e 13 A EHREES B ARF R 0 R P Al VBS-RTK AR A e & 0] F

-

AP ERES S RSB ES R AR 2 A BATHE L0533 A%

THREFEAAREIPRENT O FIAG LASRY O RIBEH AT A BFEL o

i (m)
a(m)
I

b e B A2 AL FARGE L2 4 AR b 5 2 1L E FARSRLI & b phit b 5 £2 2 LB

26 7.8 125 19.0 24.2 31.3 359 42.5 495 57.1 62.6 685 714 37 85 120 152 178

Bl 5.1 LPS 7 A%&5 3 4 = %

32

%3t AP 3E#E(m) B3tk

209 242 271 29

25 i (m)
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F. 5.1 ZA4p A5 H A Sodic

ZAp A5

Autel EVO II 6K PRO

AR

1"CMOS 7 »xif% 2000 F

HLERAR & FOVS§2
BLER E T E§E D 28.6 mm
kB o f/2.8-f/11
EFEIm I E s (&% p &3 EH5)
23T R 5472%3648 (3:2)
#F 170m
Wi/l R E S 75%/75%

3.87 cm/pixel

TR kR ¢ L https://www.autelrobotics.com/; 2. #FF 7 A
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8] 151
06/13 3tuids 125
o 07/12 @iz Hln

B8 15
A5 B RDSH p
et E A2 3 B4 7 B
10m
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VBS-RTK £ PRI &7 if 38 1875 = 50 a8 7 2R HEAL R 2 #) R AT B
SRR F T AFRLBRA PR T KRG E P o z’ﬁ'lébﬁ’l'/,f‘&;;gém

%?'F'ﬁ‘fw'—gx [ % A= PN FRZ BT L BEF e AT o B ;ﬂa%f@_& I#\

\

B %)

—

‘-'-H

2
2

BPAFRTHEBERT DSM 57 1 T3 DEM T » 4o 5.4 #77 o

W R ERENA
3m

RE K
75 150 m

5.4 7 % % % DEM A & & %

512 kiR

Pr LR ERPUR S R Bk R AR TR R S5 S 0 TR

pai

FIF BRRIELGP P RER AR AFFLRBAIPIEE ]

Aibip f e b AITPRITICR PR B TR > FIRLRI LR R R AR Kt

% & > < Pt up & Pt mid &7 ¥ it & vk =F 4 > 1% Pt_downL {r Pt_downR

EOREH TR FIHR B AR BT KR MR A RIK T e 0T e
bk A WA T A A PP PR IR R
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MEFENUFEAA R PR AFTL REBOT RSN EL KRBT

R o £ Ptmid TR ER

fREBHE K fi 1L ER Rk i EHE
24 2400
224 2200
2 4 2000
Es £ 1800
& ¥
16 1.600
14 4 1400
12 1200 \_L'L—JLL“H
1 1000
2022-11-2100:00 2022-12-21 0000 2023-3-16 00.00 2023-4-5 00:00
T ERKME(E AEKAIKA
2 25
15 2
1 15
E E
£ ” %
05 n 1
0 I U [ ”U U 05
uH J d ML '-l u u UUL m L U J J ! J L th\; J

2022-11-21 00:00

o
2022-12-21 00:00 2022-11-21 00:00 2022-12-21 00:00

Bl 5.5 BRIk g A28 1

N

BETREAT R 2 kA TREBRRRELE A TR B ook
PGP RRT - FFRAL R A BRIV IR Y AP P B ETE 5
HAFTHPEFEFRE B3 AR F eta kT ¥ 1EEH {o4 17 (harmonic
analysis)f#47 I3 X L X M54 hP B 22w TR o AL THLET
ALFaE 4 L B4R T & o e P RBLBIPFE X 2 fad A ens T ik A fEAT R 2

REFGEE o pH 0 AL AR TR AL B R B R T

R RS I R SR PR TR
SRR 2w i A ] A SRR R T AL B R LR R

R AR 5.6 717 0 B D3 eI TR 0 FIE L GBS A
TG L PR L B F)p F L -T2 4p B 4 Bic(correlation coefficient)it {7
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P VR4S (time-lagging) ei4 47 0 T B-gp i xbBLP] T AL L T BLR| T AL U B PR IR
e VPR o RIS BRI R EORE S B R TR 7 A R E B
AL b oo A1F S Ao TR &R HE iie BF TR (% 52) G748
ST PR R o

BBITHE M 6242 vRFA TS ST AFFRESBR LT & ¥ b AFED
A% ESEPERPRES A S USRRETROQIS Q25 2 A FA

SOk S TEBEE BRR o 2 % I AeR 5.7 At o

Yy =pPix; + Bax; t £ (345.1)
He
P11~ P2 = B ERREEL
Xy v Xy = i LR FOR (m)
€ = #F4(m)
y = TRk i (m)

4052 L ALK TR S £

AP EEE AR rnEE

HE T 0.6025 0.5025

e =7 Qrs=1.019m

T ST /B 0.6615 0.4784

“ B = 7 4 Qs=-0.6105m

B E R 0.6025 0.5025
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Water Surface Elevation (m)

!
1% B8 78 3t $h AT time
.. - lagging 4 # & W ] 44 Hirtime lagging 547 95 R T L 5
panp At Lol s pnagnne [>lesumnmniss || A sine
) e o) 36 4 0 39 BHM [ESGEIRE T 3 lagging# ik &
16 41 # 6 BH 5]
]
v
3HAT R A RIE S B
s Lk B e E 2ARB R E B A EEC] SRR
AT R BE5H7 P18 4 7 4 6 60 i A B B & 14 32 2o )
35 4 )
|
v
I B & 75 B 7 AL
amesapsig [ [SEETARHTH il o TS RlE
BALA A RME 0 e e e >| 6 R >| #thE S EEHAE
8 “%%“‘ & T AL by o 3 e
THE

5.6 -k FF LA 4 TE AR

WSE Addendum (pt_downR)

—— Chuwei
—Hsinchu
——Eslimalion |
4™ o Observation

Julian time (15min)

B 5.7 -k = F 4245 B & % (pt_downR) (x #h i R = FFFGEFE )
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PHEERGLAREET P EE G S LB EER o PESe TN 14
S RRIBER G 2022/1128 1 O30 AAsT T 4830 A 0 REG
Jedg P B B R A SRR B RAERL S R R TR G 6
o rEER TN ERERES L loms BRI Y L F % A £ R

i 48 ) PETE A T AAZE Smmo F) {8 & loms F FATR X ki i ST A

513  #EE B A%
RERSEPMRAOSES AT IS AFR] A gy s A A
HEp B AR TR e B S T T FI R L A REPTRZ A
FERFABSE A I R TR e s ARG R R £ F (AT
KATE 02012)3F 2008 £ ‘o fHkw A 2 R F R AR L HE P 5 2 plane (C02)
TR SR L PE L RIS (COB 4L - 2 2 %R R I A L R
EAE W S (B 5.8) A EELT kit (d,,)2 5 1.83mm > BIEIR R K 0 (e

BLERIS A B G AZE 40%03 F T < 3 2mm BITEE o

100
90
80
70
60
50
40
30
20
10

BBERE (%)

100

o

100
90
80
70
60
50
40
30
20
10

0

amag® (%)

100

2
N

BiE (2 ) BAE(AR)

Bl 5.8 4 g iss o
PoE s Rl CO2 BB (ZW) > FEAFL F xRl CO3HRE (+H)

FTRLRR  BRE R ATEE K RG] — I AR e 1 4F £ (2008)
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Tb BLRR R R AT L SR &R ACR] 5.9 1 o R T s g
FRA R EREIFF K RSP B S AR L R R A VA

TER BRI (dg) AR (EAIGRAIE 0 2012) 0 A ERETFEF LT A¥Te 20T

IR I RE > U IREALAEEIRBGARD -
X ) .

: : & 451
A / s — 1R R AR
. 5 GRH\ T )
El EF A
75

WSO FkHARTHASEA R

5.2 fViE =

5.2.1 Fogs 0E E R w

4o 42 @it 2 TR ET N B v chSRH2D R BHE N TR DT RED

il

TRt RE RIS e REE 0B R EEHRA 2 124 2 S
Fifer MEE R ER RPN RIFERET BRSO KRR S R
AE RGBT R e B o 4.2.1 & 0] 4.2 4
FoORRE BN EEEY Y REER PSR FREAeR 42 95 0 1

K i 3 Gl d e
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BB IEER R A a5 (B 34) feér VB REFAF 7%
T A ARE S e TR DA LR DERD BRI S EARLITRE

Feafend B ERARE 063 0.7cm RTHRP LR G 13me & KGR E

BA® SR IATPEMS AKRERE S 0.7m -~ H 4y 13m v & 4k 5 e

Im» 25 R T T

B %3 BIH T B TR R HORUE B 00 B i L

A S

R F AT RBAKRIRERER -

B RTICEHRARERLER A S - TR E- 27 R (T
MK EB > LLEFI R RARIE S T R ) A FE AR A G KRR TR

) e 8 U Gk RENT I R S BN R R 5 T R A R

A d kIR R A RS AN

l_

RN E T R K Y R AR il
lz’ﬂ'lg,ﬁ%.éﬁré‘f-% 3V R AT BB R B DI Reh

Y3 S T IES

PR

1)

¢ B )
JEARE Fndh

[ n-0. 035

[ n=0.04

I -0.03

TR R Tk B, RT3 IR
3 0.2m, 0.8

0.2m 1. 1Im

BX 0.2m, 0.5m

0 100 200m

BISIOH S AAE B0 2 kEAERT
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IHEERERLR RS 2B RBRSI2 Fk A RS gg"ﬁ’”ﬁ“%%
AnE loms K Zo TR EE R R EG] 0 F SRS 522 &g ¥
Pt mid &7 $ 8% F > 5 F AN E LN A LB BRI T AR g o
W B B E B PR R R (AR ) S A e B f 2023/03/19
T 5BEAS A 2023/03/21 T £ SBLAS A £ 48] pEerT 5L ALes (Pt_downR)
BB FTA T A% Ptmid hT AR o PR AR ) ATE R

A R E A kb ) TIPSR EER S E E BN o

AT H Y SRH2D #0573 B e 4 a0 % U F oS e 2 R gt
FEH LN FL (1) FEBFECHHRE RS & B B BRI HC
PR R AR ER R ET RS ST AR RLEG B RS S
(2) S st Pl chd P58 (4RI L% ) 4R n EHES 3 M-
Rfgo) = % b5 fLERA R L2 B]A REE @R R EF)RAR < R e
WA RGEREE BT RS REAG TSR @ BTN
PR RGIIEE A gL o Em ARG R B S R RFeARA L 21
YRR EMEE L R 2 T RAETRE G S % S 62 $ T
RPEABEF RS AFT Y A2 WA SHEF R TFEERF 2 P 5
&ﬂﬁ%ﬁ?ﬁ‘aii%@%@m%%mﬁ%ﬁ%%ﬁam%wﬁm%ﬂﬁa
AR R R RS AT RS BARAMME (B 5.11) R0k A ptrs ~

EAE TP E A R A PR R T ERE RPN BEITR LD S

vk E ERAENE LI (R/m?) ZAHRRE T ARSI E S k4o 53 7

7F o
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1]

» 0613_GCPs
== LPS_L2
DSM
W BRRENH
10m

B S0 AT % iAo B3 2R A7 R

o St BRI R TR R B A A e ERME e S AR
BT R R P RS £ RS SR R R R R R
A rUMGU SRR A G RE R R EARY B A B R T Sk
LEERFEP NS RFESESFHE S Y BN X FIL P E R TR 2 Bk
FEB KA ) A B R SIS e 0 R R R RE

L SRR PR S AR S ¥ T A ok
SRS G2 BEERR T IVRBE P E AR R SRS TE A A

L ER 4o 53 2 B 5.12 #9oF o
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% 5347 B S AHRAIRY &2 SRH2D B H& SR TE 2%

frag s PR 4535 R 6 fixE AT SORHE
ERHRHE R R 25 7

=HBE TR H A :%

BT AR T 1.1 ($/m?) x137619(m?)x0.117 (m/4k)

~17712(m)

FEpy | EWIM B @Im BETRM] R
OB1 18 3.5 7.15 5
OB2 24.5 3.5 7 2
OB3 35 3.5 10 72
OB4 55 3.5 15.7 20

i=4
R AR ) (BT R X B ) =1074m)

150 m
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522  HEAKZES%E

BRI AHIIRS S 40T 0 AN A FLLEELS SHEFIHFB) 0B
B I R RRIESF AR 0 S BGE ek 5.4 971 o F T AR
E®n Bk L3 F 5L RN R B 0 4 B0 1(Furukawaetal., 1997) 5
0.25-0.97 (Bryant et al., 2022) » *=x #=#] %4 * Furukawa % % 23k & 0.1 - 2 4

J‘*}%# R GIHE § B ER D5 0030 F AR EBIBET AT 0 A E W
teEREAR ] R g M e (FARE- > FRE S 0 P K R R ek 3
3mo p EF G R RE RIS Rk b B A bk g
T FRE G 1 PR g R A e 1L 02m 0 f2 5 A 3 B vk
mEF AT RS AL e 23 R B AR b ®on ER T

VA2 HERT ot > BRI HF(B)E 07 5 fikjz -

F 5.4 BAEY IS (B) K s 2 PR Sl

A FTEEN A 25 B E R AT (£ 611 4)

d g FrREEA A C TP = F A 0.1522m (44 6.1.2 &)

B & 0.15sec

$ 41 % (control group) F B % (treatment group)
L 0 0.035
BEE Bl 0.04
kBB 0.1 0.03
FHA A R dk(Cy) — 1.2/—
BT () — 0.0/0.4/0.7/1.0/—
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(AT ]

Es
‘?Vﬁ
Aol 4
=
2 3
2
1
0
5 10 15 20 25 30
#5885 K (hr)
—B=0.0 =04 —p=0.7 —pB=1.0 n=0.03 —n=0.10
B 5.13 3 I B 443 W3 (B) & ki & B n @k mg i
BOFEGRCS S 2 B 0 R R S R R AR A

Pt mid sk 2 F AL 7R IR RSN Sl 5 2% % > 1% NSE » RMSE 2 KGE
FRAEER AR B0 B REL B o BN R BHERES B
FBEET B BERE LI XTEEN A fFE B GBEERE R AT
R 1@?14?) A

PO s S % S Y b B05% > 7k #ic(Nash-Sutcliffe Efficiency
Coefficient, NSE)i& (78 7% » 3+ & 2 ;84 (54 5.2 #777 (Nash & Sutcliffe, 1970) - NSE

EE - R R R RRITORERRT LR HiEd § 25

1> FZa N RBOR TR AL i A T3 BRPIFTRE A ELFL T2 RE VR §
BUBIFAL A 2 @38 NSE A%837 | 2 70 R E2 N0 B7H > &S &
NSE &>0.9 % 77 & F 2% 247 (Ritter & Mufioz-Carpena, 2013) » 4 NSE & 4837 0

F o7 B A % AT 0 ERLP ?’} L 3E

..X

Bo% NSE |50 0 & H HR F AL E L6+

\!

BT A L R A R R
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_ Zé\,:l[CIObS(t) - CIsim(t)]

N = T 10w (® — Tona? |
NSE = 1— (MSE) St
0Op
Ho o,
Qobs(t) =t AR T qun () =t PF R B T A
Gobs = BRI AT S N = WP
# 55 NSE 58 & f 4 B 4
Bt & NSE
e =0.90
L 0.90~0.80
G L 0.80~0.65
P EEE <0.65

fo gt hdicd ALFNS F s E % & 4 (Gupta & Kling, 2011; Liu, 2020;
Schaefli & Gupta, 2007) » »[4- : NSE - Min & ¢ B Gt BN €M » 3% 1k
Bt ? Pk G| T @ R ot kA AT NSE am R A R *
MSE(Mean Square Error)ieif "% i i #icdt $13 p M (27 cha 45 » T8 4305 3
RESEARICHATY §REB G AP g TP TH PP R BB
WALNT AL Feh & F PR s 0 3 NSE B 6 4 R @ 4R AL fhai(Corr)
#14; # KGE(Kling-Gupta Efficiency) » 4= (% 5.3 “777 « KGE 431k 4 fidp B 12
GEBEEL I TE > T EET o EE O KGE S B3 1 Bimddt &

B Rk -
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Osim 2 Usim 2
KGE =1 — (Corr—1)2+(——1> +( —1)

Corr =
H2Ze
Osim
Usim
Xi Y
71\155
e 2w

E SLRNY Y AIE

Oob Uob

n _ _ (31 535)
Y X=X -7)

JHo5N ¢ Slicek 70 S8 S Bk Y § B

JEL -0 50—y

- HRFEEREL g, = BRI TR £

- EREEIBE o, = BB THRTEE

= HoEELR TR XY = HoR/BRR TR IO

#4514 NSE 5 2 > # 12 KGE 4+ RMSE(Root Mean Square Error)ig {7

nml/}»

BonEsEdE R

3 EF 27 BFH

\\\?{r

Bk

vk 5.6 o 0 4T G

R PRk s A S o

3 5.6 ¥R EF w2 N

\\\?{r

ok

2023/03/19 T = 5845 5 1

B P

2023/03/21 T = 58455 > £ 48 ] pF (192 1)
* i GE lems f%&*a‘f%éé‘_;ﬁdféﬁé‘_ (%4 5128&)
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RMSE #% fo Scm 1 > ¥ NSE & 535432 098 0 o pt 7 dvk 97§ Sdicle &4
P B eh PR S 2 2 > PR Y A 4 ¢ 4 max_error {e min_error ¥ 14 {¥
oo g R R R R AR R SRR (R 5.24cm & iR
£ 11.38cm) » #8 n & 5 0.030 PFCorrfie+ » 7 Hid X B 5 0.030 ¥ &2 F X 3k
FHATH 0P i e kR (n=0.035)F TR B Bi% € L REITIRE R BB A F
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% 5.7 ¥ Bk

(e -~

7 %

Mudflat-n 0.035
Algal-n 0.040 Algal-n 0.043 Algal-n 0.045
Cy=1.1 Cy=12 Cy =13 Cy=1.1 Cy=12 C, =13 Cy=1.1 Cy=12 €y =13
RMSE 0.0479 0.0478 0.0476 0.0481 0.0480 0.0479 0.0484 0.0482 0.0481
Max error | 0.0525 0.0524 0.0524 0.0523 0.0523 0.0522 0.0524 0.0525 0.0526
MIN error |  -0.1143 -0.1141 -0.1138 -0.1159 -0.1158 -0.1157 -0.1170 -0.1169 -0.1168
NSE 0.9819 0.9820 0.9821 0.9817 0.9818 0.9819 0.9816 0.9816 0.9817
Corr 0.9980 0.9980 0.9980 0.9978 0.9978 0.9978 0.9976 0.9976 0.9976
KGE 0.9345 0.9346 0.9348 0.9353 0.9355 0.9357 0.9359 0.9360 0.9362
Mudflat-n 0.033
Algal-n 0.040 Algal-n 0.043 Algal-n 0.045
C,=1.1 Ci=12 Cy=13 C,=1.1 C,=12 C, =13 C,=1.1 C,=12 C, =13
RMSE 0.0479 0.0478 0.0476 0.0481 0.0480 0.0479 0.0484 0.0483 0.0481
Max _error | 0.0525 0.0525 0.0525 0.0523 0.0523 0.0523 0.0523 0.0522 0.0523
MIN error | -0.1143 -0.1141 -0.1139 -0.1160 -0.1158 -0.1157 -0.1172 -0.1170 -0.1169
NSE 0.9819 0.9820 0.9821 0.9817 0.9818 0.9819 0.9816 0.9816 0.9817
Corr 0.9980 0.9980 0.9980 0.9978 0.9978 0.9978 0.9976 0.9976 0.9976
KGE 0.9344 0.9346 0.9348 0.9352 0.9354 0.9356 0.9358 0.9360 0.9362
Mudflat-n 0.030
Algal-n 0.040 Algal-n 0.043 Algal-n 0.045
C,=1.1 Ci=12 Ci=13 Cy=1.1 Cy=12 C, =13 Cy=1.1 Cy=12 Cy=13
RMSE 0.0479 0.0478 0.0476 0.0481 0.0480 0.0479 0.0484 0.0482 0.0481
Max error | 0.0525 0.0524 0.0524 0.0523 0.0523 0.0522 0.0524 0.0525 0.0526
MIN error | -0.1143 -0.1141 -0.1138 -0.1159 -0.1158 -0.1157 -0.1170 -0.1169 -0.1168
NSE 0.9819 0.9820 0.9821 0.9817 0.9818 0.9819 0.9816 0.9816 0.9817
Corr 0.9981 0.9981 0.9981 0.9978 0.9978 0.9978 0.9976 0.9976 0.9976
KGE 0.9343 0.9345 0.9347 0.9351 0.9353 0.9355 0.9357 0.9359 0.9361
Mudflat -n=0.035 Cd Mudflat-n=0.033 Cd Mudflat -n=0.03 Cd
NSE 1.1 12 1.3 NSE 1.1 1.2 1.3 NSE 1.1 12 1.3
0.040 [ 0.9819 | 0.9820 | 0.9821 0.040 | 0.9819 | 0.9820 | 0.9821 0.040 | 0.9819 | 0.9820 | 0.9821
Algal-n0.043 ] 0.9817 | 0.9818 | 0.9819 |Algal-n[""0043 | 0.9817 | 0.9818 | 0.9819 |Algal-n[""0043 [ 0.9817 | 0.9818 | 0.9819
0.045 | 0.9816 | 0.9816 | 0.9817 0.045 | 0.9816 | 0.9816 | 0.9817 0.045 | 0.9816 | 0.9816 | 0.9817
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BAETNUREEAF AL FLF TR VM RREALELSF R ALY
& ORI R 3R R R P e AR R T PR R 0 3T
TSN A EL RIHEE T AFL A RR A ISP ) -

e ﬁisall’ S FHEEE S % 0 12 Parker (1990)4 Wilcock and Crowe (2003)m§iﬂ£’/
SREFPREEAFLOFRTHEE PRSI RL AT AN AL D
A E AT R EFEL P GE R SRR LT R PR 2

FRHAAL RET R DL TR P AR LN A v e R T 2w R
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SRR ERE (2 2) BN ERAT REEAR AT EEL RE 0
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SE B
Qp = X% /& (csm) 18.92
A = i & ff (km?) 19.83
R, = A2;% " & (mm) 54.27
D = ¥ =% & 2 p(hr) 1
T, = B heiEOK T E % B 4 pERY (hr) 2.18
T, = § i pF R (hr) 3.27
T, = g T AR g2 pE R (hr) 3.64
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6.1.3
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2633 TR T G F AL SRR 5 300ppm 2 Fi R AR S %

2022 MWL -300ppm

1 2 3 4 5 6 Total Total without river
total 58233 24934 4745 19223 3141 27091 137367 110276
Area(m?) erosion 11422 2110 726 1341 109 2149 17857 15708
deposition 46349 22823 4019 17942 3033 24943 119109 94166
erosion -30 -14 -12 -10 -1 -22 -89 -67
Volume(m®) deposition 15 59 38 63 46 132 353 221
net -15 45 25 53 45 110 263 153
Average without river
Height(cm) ero/dep(-/+) -0.03 0.18 0.53 0.28 1.43 0.41 0.19 0.14
2050 MWL -300ppm
1 2 3 4 5 6 Total Total without river
total 58233 24934 4745 19223 3141 27091 137367 110276
Area(m?) erosion 11422 2110 726 1342 109 2152 17861 15709
deposition 46446 22824 4019 17942 3033 24940 119204 94264
erosion -30 -14 -12 -10 -1 -22 -89 -67
Volume(m?®) deposition 15 59 38 63 46 132 353 221
net -15 45 25 53 45 111 264 153
Average without river
Height(cm) ero/dep(-/+) -0.03 0.18 0.53 0.28 1.43 0.41 0.19 0.14
2100 MWL -300ppm
1 2 3 4 5 6 Total Total without river
total 58233 24934 4745 19223 3141 27091 137367 110276
Area(m?) erosion 11424 2109 726 1342 109 2151 17861 15710
deposition 46444 22825 4019 17942 3033 24940 119203 94263
erosion -30 -14 -12 -10 -1 -22 -89 -67
Volume(m®) deposition 15 59 38 63 46 132 353 221
net -15 45 25 53 45 111 264 153
Average without river
Height(cm) ero/dep(-/+) -0.03 0.18 0.53 0.28 1.43 0.41 0.19 0.14
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2643 T EARTG F AL GREA 5 600ppm 2 Fi R A S %

2022 MWL -600ppm

1 2 3 4 5 6 Total Total without river
total 58233 24934 4745 19223 3141 27091 137367 110276
Area(m?) erosion 9556 1770 508 569 42 1180 13625 12445
deposition 48214 23164 4237 18714 3099 25911 123339 97428
erosion -28 -13 -7 -3 0 -10 -61 -51
Volume(m®) deposition 23 101 78 128 104 310 744 434
net -5 88 71 126 104 300 684 384
Average without river
Height(cm) ero/dep(-/+) -0.01 0.35 1.50 0.66 3.31 1.11 0.50 0.35
2050 MWL -600ppm
1 2 3 4 5 6 Total Total without river
total 58233 24934 4745 19223 3141 27091 137367 110276
Area(m?) erosion 9551 1769 508 569 42 1180 13619 12439
deposition 48220 23164 4236 18714 3099 25911 123344 97433
erosion -28 -13 -7 -3 0 -10 -61 -51
Volume(m?®) deposition 23 101 78 128 104 310 744 434
net -5 88 71 126 104 300 684 384
Average without river
Height(cm) ero/dep(-/+) -0.01 0.35 1.50 0.66 3.31 1.11 0.50 0.35
2100 MWL -600ppm
1 2 3 4 5 6 Total Total without river
total 58233 24934 4745 19223 3141 27091 137367 110276
Area(m?) erosion 9546 1769 508 569 42 1179 13613 12434
deposition 48322 23164 4237 18714 3099 25913 123449 97536
erosion -28 -13 -7 -3 0 -10 -61 -51
Volume(m®) deposition 23 101 78 128 104 310 744 434
net -5 88 71 126 104 300 684 384
Average without river
Height(cm) ero/dep(-/+) -0.01 0.35 1.50 0.66 3.31 1.11 0.50 0.35
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26572 THaT o AR IRER 5 1200ppm 2 Hae i AR & &

2022 MWL -1200ppm

1 2 3 4 5 6 Total Total without river
total 58233 24934 4745 19223 3141 27091 137367 110276
Area(m?) erosion 7614 1430 285 128 5 798 10260 9462
deposition 50253 23504 4460 19155 3136 26294 126802 100508
erosion -26 -11 -3 -1 0 -6 -47 -41
Volume(m?®) deposition 40 176 164 279 222 691 1572 881
net 14 165 161 279 222 685 1526 841
Average without river
Height(cm) ero/dep(-/+) 0.02 0.66 3.39 1.45 7.07 2.53 1.11 0.76
2050 MWL -1200ppm
1 2 3 4 5 6 Total Total without river
total 58233 24934 4745 19223 3141 27091 137367 110276
Area(m?) erosion 7615 1429 287 128 5 796 10260 9464
deposition 50156 23504 4458 19155 3136 26295 126704 100409
erosion -26 -11 -3 -1 0 -6 -47 -41
Volume(m?®) deposition 40 176 164 279 222 691 1572 881
net 14 165 161 279 222 685 1526 841
Average without river
Height(cm) ero/dep(-/+) 0.02 0.66 3.39 1.45 7.07 2.53 1.11 0.76
2100 MWL -1200ppm
1 2 3 4 5 6 Total Total without river
total 58233 24934 4745 19223 3141 27091 137367 110276
Area(m?) erosion 7613 1428 285 128 5 796 10255 9459
deposition 50157 23506 4460 19155 3136 26295 126709 100414
erosion -26 -11 -3 -1 0 -6 -47 -41
Volume(m?®) deposition 40 176 164 279 222 691 1572 881
net 14 165 161 279 222 685 1526 841
Average without river
Height(cm) ero/dep(-/+) 0.02 0.66 3.39 1.45 7.07 2.53 1.11 0.76
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