Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88245
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛宇甯zh_TW
dc.contributor.advisorLouis Geen
dc.contributor.author劉玳語zh_TW
dc.contributor.authorDye-Yu Liuen
dc.date.accessioned2023-08-09T16:11:13Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-23-
dc.identifier.citationAchal, V., Mukherjee, A., Basu, P. C., and Reddy, M. S. (2009). Strain improvement of sporosarcina pasteurii for enhanced urease and calcite production. Journal of Industrial Microbiology & Biotechnology, 36(7):981–988.
Al Qabany, A. (2011). Microbial carbonate precipitation in soils. PhD thesis, University of Cambridge, UK.
Al Qabany, A. and Soga, K. (2013). Effect of chemical treatment used in micp on engineering properties of cemented soils. Geotechnique, 63(4):331–339.
Al Qabany, A., Soga, K., and Santamarina, C. (2012). Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8):992–1001.
Al-Salloum, Y., Abbas, H., Sheikh, Q. I., Hadi, S., Alsayed, S., and Almusallam, T. (2017). Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar. Saudi Journal of Biological Sciences, 24(2):286–294.
Al Thawadi S, C.-r. R. (2012). Calcium carbonate crystals formation by ureolytic bacteria isolated from australian soil and sludge. International Journal of Advanced Science and Technology, 2(1):12–26.
Arunachalam, K. D., Sathyanarayanan, K. S., and Darshan, B. S. (2010). Studies on the characterisation of biosealant properties of bacillus sphaericus. International Journal of Engineering, Science and Technology, 2(3):270–277.
Bachmeier, K., Williams, A., Warmington, J., and Bang, S. (2002). Urease activity in microbiologically-induced calcite precipitation. Journal of Biotechnology, 93(2):171–181.
Bang, S. S., Lippert, J. J., Yerra, U., Mulukutla, S., and Ramakrishnan, V. (2010). Microbial calcite, a bio-based smart nanomaterial in concrete remediation. International Journal of Smart and Nano Materials, 1(1):28–39.
Benini, S., Rypniewski, W. R., Wilson, K. S., Miletti, S., Ciurli, S., and Mangani, S. (1999). A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from bacillus pasteurii: why urea hydrolysis casts two nickels. Structure, 7(2):205–216.
Bird, J. F., Boulanger, R. W., and Idriss, I. M. (2005). Liquefaction. Engineering Geology, pages 525–534.
Bosak, T., Souza-Egipsy, V., Corsetti, F. A., and Newman, D. K. (2004). Micrometer-scale porosity as a biosignature in carbonate crusts. Geology, 32(9):781–784.
Cheng, L., Qian, C. X., Wang, R. X., and Wang, J. Y. (2007). Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe. Acta Chimica Sinica, 65(19):2133–2138.
Cheng, L., Shahin, M., Cord-Ruwisch, R., Addis, M., Hartanto, T., and Elms, C. (2014). Soil Stabilisation by Microbial-Induced Calcite Precipitation (MICP): Investigation into Some Physical and Environmental Aspects. 7th International Congress on Environmental Geotechnics, Melbourne, Australia.
Choi, S.-G., Wu, S., and Chu, J. (2016). Biocementation for sand using an eggshell as calcium source. Journal of Geotechnical and Geoenvironmental Engineering, 142(10).
Chou, C. W., Seagren, E. A., Aydilek, A. H., and Lai, M. (2011). Biocalcification of sand through ureolysis. Journal of Geotechnical and Geoenvironmental Engineering, 137(12):1179–1189.
Ciurli, S., Benini, S., Rypniewski, W. R., Wilson, K. S., Miletti, S., and Mangani, S. (1999). Structural properties of the nickel ions in urease: novel insights into the catalytic and inhibition mechanisms. Coordination Chemistry Reviews, 190:331–355.
De Belie, N. and De Muynck, W. (2008). Crack repair in concrete using biodeposition. Proceedings of ICCRR, Cape Town.
De Muynck, W., Cox, K., De Belle, N., and Verstraete, W. (2008). Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 22(5):875–885.
DeJong, J. T., Fritzges, M. B., and Nüsslein, K. (2006). Microbial induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 132(11):1381–1392.
DeJong, J. T., Mortensen, B. M., Martinez, B. C., and Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2, SI):197–210.
Dejong, J. T., Soga, K., Kavazanjian, E., Burns, S. E., Van Paassen, L. A., Al Qabany, A., Aydilek, A., Bang, S. S., Burbank, M., Caslake, L. F., Chen, C. Y., Cheng, X., Chu, J., Ciurli, S., Esnault-Filet, A., Fauriel, S., Hamdan, N., Hata, T., Inagaki, Y., Jefferis, S., Kuo, M., Laloui, L., Larrahondo, J., Manning, D. A. C., Martinez, B., Montoya, B. M., Nelson, D. C., Palomino, A., Renforth, P., Santamarina, J. C., Seagren, E. A., Tanyu, B., Tsesarsky, M., and Weaver, T. (2013). Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique, 63(4):287–301.
Dhami, N. K., Reddy, M. S., and Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5):707–714.
Ercole, C., Bozzelli, P., Altieri, F., Cacchio, P., and Del Gallo, M. (2012). Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria. Microscopy and Microanalysis, 18(4):829–839.
Ferris, F., Phoenix, V., Fujita, Y., and Smith, R. (2004). Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20◦c in artificial groundwater. Geochimica et Cosmochimica Acta, 68(8):1701–1710.
Ferris, F., Stehmeier, L., Kantzas, A., and Mourits, F. (1996). Bacteriogenic mineral plugging. Journal of Canadian Petroleum Technology, 35(8):56–61.
Ferris, F. G., Fyfe, W. S., and Beveridge, T. J. (1987). Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chemical Geology, 63(3-4):225–232.
Gillman, E., Morgan, M. A., and Sherwood, M. (1995). Urease activity in irish soils at 6◦c. Biology and Environment: Proceedings of the Royal Irish Academy, 95B(1):19–26.
Gomez, M. G., Martinez, B. C., DeJong, J. T., Hunt, C. E., deVlaming, L. A., Major, D. W., and Dworatzek, S. M. (2015). Field-scale bio-cementation tests to improve sands. Proceedings of the Institution of Civil Engineers - Ground Improvement, 168(3):206–216.
Gorospe, C. M., Han, S.-H., Kim, S.-G., Park, J.-Y., Kang, C.-H., Jeong, J.-H., and So, J.-S. (2013). Effects of different calcium salts on calcium carbonate crystal formation by sporosarcina pasteurii kctc 3558. Biotechnology and Bioprocess Engineering, 18(5):903–908.
Han, J. (2015). Principles and practice of ground improvement. John Wiley & Sons, Hoboken, New Jersey.
Huang, Y., Luo, X. G., and Du, F. (2009). Studies on the factors of microbiologically-induced calcite precipitation. Journal of Southwest University of Science and Technology, 24(3):87–93.
Kantzas, A., Stehmeier, L., Marentette, D. F., Ferris, F. G., Jha, K. N., and Mourtis, F. M. (1992). A novel method of sand consolidation throughbacteriogenic mineral plugging. CIM Annual Technical Conf., Calgary.
Karol, R. H. (2003). Chemical grouting and soil stabilization. Marcel Dekker, New York, NY.
Keykha, H. A., Asadi, A., and Zareian, M. (2017). Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil. Geomicrobiology Journal, 34(10):889–894.
Kitamura, M., Konno, H., Yasui, A., and Masuoka, H. (2002). Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions. Journal of Crystal Growth, 236(1-3):323–332.
Kohnhauser, K. (2007). Introduction to geomicrobiology. Blackwell Publishing, Malden, MA.
Kralj, D., Brecevic, L., and Nielsen, A. E. (1994). Vaterite growth and dissolution in aqueous solution .2. kinetics of dissolution. Journal of Crystal Growth, 143(3-4):269–276.
Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice Hall, New Jersey.
Kramer, S. L. and Seed, H. B. (1988). Initiation of soil liquefaction under static loading conditions. Journal of Geotechinical Engineering,ASCE, 114(4):412–430.
Kroll, R. G. (1990). Microbiology of extreme environments. McGraw-Hill, New York.
Meldrum, F. C. and Coelfen, H. (2008). Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Reviews, 108(11):4332–4432.
Mitchell, J. K. and Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10):1222–1233.
Mortensen, B. M., Haber, M. J., DeJong, J. T., Caslake, L. F., and Nelson, D. C. (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology, 111(2):338–349.
Nemati, M., Greene, E., and Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option. Process Biochemistry, 40(2):925–933.
Obermeier, S. (1996). Use of liquefaction-induced features for paleoseismic analysis – an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of holocene paleo-earthquakes. Engineering Geology, 44(1-4):1–76.
Okwadha, G. D. O. and Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81(9):1143–1148.
Paul, E. A. and Clark, F. E. (1989). Soil Microbiofogy and Biochemisfry. Academic Press, San Diego.
Qian, C., Wang, J., Wang, R., and Cheng, L. (2009). Corrosion protection of cement-based building materials by surface deposition of caco3 by bacillus pasteurii. Materials Science and Engineering: C Biomimetic and supramolecular systems, 29(4):1273–1280.
Rahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., and Iqbal, A. (2020). State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustainability, 12(15).
Ramachandran, S. K., Ramakrishnan, V., and Bang, S. S. (2001). Remediation of concrete using micro-organisms. ACI Materials Journal, 98(1):3–9.
Rivadeneyra, M., Delgado, G., Soriano, M., Ramos-Cormenzana, A., and Delgado, R. (2000). Precipitation of carbonates by nesterenkonia halobia in liquid media. Chemosphere, 41(4):617–624.
Robertson, P. K. (1990). Soil classification using cpt. Can. Geotech.J., 27(1):151–158.
Roden, E., Leonardo, M., and Ferris, F. (2002). Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction. Geochimica et Cosmochimica Acta, 66(16):2823–2839.
Ryznar-Luty, A., Cibis, E., Krzywonos, M., and Miskiewicz, T. (2015). Efficiency of aerobic biodegradation of beet molasses vinasse under non-controlled ph: conditions for betaine removal. Archives of Environmental Protection, 41(1):3–14.
Satake, K. and Abe, K. (1983). A fault model for the niigata, japan, earthquake of june 16, 1964. Journal of Physics of the Earth, 31(3):217–223.
Seed, H. B. (1979). Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. Journal of Geotechinical Engineering,ASCE, 105(2):201–255.
Seed, H. B. and Idriss, I. M. (1971). Simplified procedure for evaluatingsoil liquefaction potential. Journal of Geotechinical Engineering,ASCE, 97(9):1249–1273.
Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. (1985). Influence of spt procedures in soil liquefaction resistance evaluations. Journal of Geotechinical Engineering,ASCE, 111(12):1425–1445.
Skempton, A. K. (1986). Standard penetration test procedures and theeffects in sands of overburden pressure, relative density, particle size,aging, and overconsolidation. Geotechnique, 36(3):425–447.
Soon, N. W., Lee, L. M., Khun, T. C., and Ling, H. S. (2013). Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE Journal of Civil Engineering, 17(4):718–728.
Soon, N. W., Lee, L. M., Khun, T. C., and Ling, H. S. (2014). Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 140(5).
Stocks-Fischer, S., Galinat, J. K., and Bang, S. S. (1999). Microbiological precipitation of caco3. Soil Biology & Biochemistry, 31(11):1563–1571.
Tang, C.-S., Yin, L.-y., Jiang, N.-j., Zhu, C., Zeng, H., Li, H., and Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (micp) treated soil: a review. Environmental Earth Sciences, 79(5).
Tobler, D. J., Cuthbert, M. O., Greswell, R. B., Riley, M. S., Renshaw, J. C., Handley-Sidhu, S., and Phoenix, V. R. (2011). Comparison of rates of ureolysis between sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite. Geochimica et Cosmochimica Acta, 75(11):3290–3301.
Tourney, J. and Ngwenya, B. T. (2009). Bacterial extracellular polymeric substances (eps) mediate caco3 morphology and polymorphism. Chemical Geology, 262(3-4):138–146.
Van Paassen, L. A. (2009). Biogrout, ground improvement by microbially induced carbonate precipitation. PhD thesis, Department of Biotechnology, Delft University of Technology, the Netherlands.
Van Paassen, L. A. (2011). Bio-mediated ground improvement: From laboratory experiment to pilot applications. Proc.GeoFrontiers 2011: Advances in Geotechnical Engineering,Dallas, TX, ASCE Geotechnical Special Publication, 211:4099–4108.
Van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., and van Loosdrecht, M. C. M. (2010a). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2, SI):168–175.
Van Paassen, L. A., Ghose, R., van der Linden, T. J. M., van der Star, W. R. L., and van Loosdrecht, M. C. M. (2010b). Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136(12):1721–1728.
Van Veen, J. A., Ladd, J. N., and Frissel, M. J. (1984). Modeling c, and n turnover through the microbial biomass in soil. Plant and Soil, 76:257–274.
Vijay, K., Murmu, M., and Deo, S. V. (2017). Bacteria based self healing concrete – a review. Construction and Building Materials, 152:1008–1014.
Wang, R. X., Qian, C. X., and Wang, J. Y. (2005). Study on microbiological precipitation of caco3. Journal of Southeast University. Natural Science Edition, 35(z1):191–195.
Warthmann, R., van Lith, Y., Vasconcelos, C., McKenzie, J., and Karpoff, A. (2000). Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28(12):1091–1094.
Whiffin, V. S., van Paassen, L. A., and Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5):417–423.
Whifn, V. S. (2004). Microbial CaCO3 precipitation for the production of biocement. PhD thesis, Murdoch University, Perth.
Whitman, W. B., Coleman, D. C., and Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 95(12):6578–6583.
Wiley, W. R. and Stokes, J. L. (1962). Requirement of an alkaline ph and ammonia for substrate oxidation by bacillus pasteurii. Journal of Bacteriology, 84(4):730–&.
Wong, H. E. (2022). Effects of calcium source on sand biocementation. Master’s thesis, National Taiwan University, Taipei.
Xanthakos, P. P., Abramson, L. W., and Bruce, D. A. (1994). Ground control and improvement. John Wiley & Sons, New York, NY.
Yasuhara, H., Neupane, D., Hayashi, K., and Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations, 52(3):539–549.
Youd, T. L. (1984). Geologic effects liquefaction and associ- ated ground failure. Proceedings of the Geological and Hydrologic Hazards Training Program, pages 210–232.
Youd, T. L. and Perkins, D. M. (1978). Mapping of liquefaction potential using field performance data. Journal of Geotechinical Engineering Division, 104(8):997–1015.
Zhang, Y., Guo, H. X., and Cheng, X. H. (2014). Influences of calcium sources on microbially induced carbonate precipitation in porous media. Materials Research Innovations, 18(2):79–84.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88245-
dc.description.abstract台灣因位處歐亞板塊及菲律賓海板塊交界之環太平洋地震帶上,故地震相當頻繁,而當大規模地震發生時,常伴隨土壤液化產生並帶來嚴重災情,而隨著人口密度越來越高,對於土地利用之需求也與日俱增,原先傳統之低矮建物,漸漸開始由密集之高樓大廈所取代,因此進行土壤改良刻不容緩。本研究使用一種環境友善且具經濟性之地盤改良工法: 微生物誘導碳酸鈣沉澱 (Microbially Induced Calcite Precipitation) ,簡稱 MICP,該工法應用土壤中之細菌進行砂粒固結,藉此改善軟弱土壤之工程性能。本研究針對三種尺度進行MICP改良成效探討,分別為表面滲透之小型砂箱試驗、側向加壓滲透之中型砂箱試驗、側向加壓滲透之現地試驗。第一種小型砂箱試驗,將符合標準靜三軸試驗規格設計之取樣器A埋入後填砂,進行表面MICP改良液滲透,待七日養護完畢後,由酸洗試驗及靜三軸試驗結果顯示具有均勻且整體強度提升之改良成效。第二種中型砂箱試驗,將不產生側壁溶液阻擋之取樣器B埋入後填砂,進行側向MICP改良液加壓滲透,待七日養護完畢後,由酸洗試驗可以觀察到在400 kPa側向加壓下,有效改良範圍符合預期之走向。第三種現地試驗,將取樣器A及澆灌管線輔助壓克力基座埋入,進行側邊雙向MICP改良液加壓滲透,待七日養護完畢後,因現地試驗之不可控因素相當多,由酸洗試驗結果發現大部分取樣點仍有明顯之碳酸鈣結晶生成,顯示該澆灌系統之設計可以有效地將改良液滲透進土壤中。zh_TW
dc.description.abstractAs Taiwan is situated on the Circum-Pacific Seismic Belt, where earthquakes happen frequently and can lead to soil liquefaction, resulting in severe disasters. As the population density continues to increase and the demand for land use grows, traditional low-rise buildings are gradually being replaced by densely packed high-rise buildings. Therefore, soil improvement is urgently needed. This study employs an environmentally friendly and cost-effective ground improvement technique called Microbially Induced Calcite Precipitation (MICP). MICP utilizes bacteria present in the soil to consolidate sand particles, thereby improving the engineering properties of weak soils. The effectiveness of MICP improvement was investigated at three scales: small-scale sandbox tests with surface infiltration, medium-scale sandbox tests with lateral pressure infiltration, and field tests with lateral pressure infiltration. In the small-scale sandbox test, sampler A, designed according to standard consolidated drained triaxial test specifications, was buried and filled with sand. After a seven-day curing period, the results of acid digestion tests and consolidated drained triaxial tests indicated a uniform and overall increase in strength due to the improvement. In the medium-scale sandbox test, sampler B, designed to prevent sidewall solution blockage, was buried and filled with sand. After a seven-day curing period, acid digestion tests revealed that the effective improvement range matched the expected trend under a lateral pressure of 400 kPa. In the field test, sampler A and an acrylic base with watering pipelines were buried. After a seven-day curing period, due to numerous uncontrollable factors in the field test, acid digestion test results showed significant calcium carbonate crystal formation in most sampling points, indicating that the design of the watering system effectively allowed the improvement solution to permeate the soil.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:11:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:11:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xii
表目錄 xviii
符號列表 xix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究方法 3
1.4 研究架構 3
第二章 文獻回顧 5
2.1 土壤液化機制與破壞 5
2.1.1 土壤液化發生機制 6
2.1.2 土壤液化之破壞 7
2.2 生物介導之土壤改良 13
2.2.1 土壤改良 13
2.2.2 概述生物介導之土壤改良 15
2.2.3 微生物誘導碳酸鈣沉澱 (MICP) 18
2.2.4 MICP 機制 18
2.2.5 MICP 影響因子 24
2.2.6 MICP 在大地工程之應用 36
第三章 研究方法 41
3.1 菌液配製與培養 41
3.1.1 試驗材料與器材 41
3.1.2 液態培養基配製 43
3.1.3 固態培養基配製 46
3.1.4 凍菌配製 48
3.1.5 菌液品質檢測 49
3.1.6 MICP 菌液完整配製流程 51
3.2 砂箱試驗材料 53
3.2.1 石英砂 53
3.2.2 尿素 53
3.2.3 氯化鈣 54
3.2.4 濾紙 54
3.2.5 離心管 56
3.2.6 取樣器 56
3.2.6.1 取樣器 A 56
3.2.6.2 取樣器 B 60
3.2.7 頂土器 61
3.2.8 壓克力砂箱 61
3.2.8.1 小型壓克力砂箱 61
3.2.8.2 中型壓克力砂箱 62
3.2.9 可拆式排水緩衝池 63
3.3 試體準備 64
3.3.1 壓力鍋試驗 64
3.3.1.1 純砂試體準備 64
3.3.1.2 MICP 之乾試體準備 65
3.3.1.3 MICP 改良試體準備 66
3.3.2 靜態三軸壓密排水剪切試驗 68
3.3.3 酸洗試驗 69
3.4 試驗方法 69
3.4.1 壓力鍋試驗 70
3.4.1.1 比重試驗 70
3.4.1.2 含水量試驗 71
3.4.1.3 壓力鍋試驗流程 71
3.4.2 靜態三軸壓密排水剪切試驗 74
3.4.3 酸洗試驗 77
3.4.4 表面滲透之小型砂箱試驗 80
3.4.4.1 試驗設備 80
3.4.4.2 表面滲透之小型砂箱試驗流程 80
3.4.5 側向加壓滲透之中型砂箱試驗 83
3.4.5.1 試驗設備 83
3.4.5.2 試驗測試 84
3.4.5.3 側向加壓滲透之中型砂箱試驗流程 88
3.4.6 側向加壓滲透之現地試驗 93
3.4.6.1 試驗規劃 93
3.4.6.2 試驗設備 94
3.4.6.3 澆灌系統配置 95
3.4.6.4 回填土物性試驗 98
3.4.6.5 MICP 改良液配製 98
3.4.6.6 側向加壓滲透之現地試驗流程 101
第四章 結果與討論 107
4.1 壓力鍋試驗 107
4.2 表面滲透之小型砂箱試驗 108
4.2.1 酸洗試驗結果 108
4.2.2 靜態三軸壓密排水剪切試驗結果與比較 111
4.3 側向加壓滲透之中型砂箱試驗 116
4.3.1 噴液有效範圍分布 116
4.3.2 含水量分布 119
4.3.3 酸洗試驗結果 120
4.3.3.1 垂直向改良成效 121
4.3.3.2 水平向改良成效 123
4.3.3.3 取樣器 B 對改良液滲透之影響 125
4.4 側向加壓滲透之現地試驗 127
4.4.1 含水量分布 127
4.4.2 酸洗試驗結果 128
4.4.2.1 垂直向改良成效 128
4.4.2.2 水平向改良成效 129
4.4.3 靜態三軸壓密排水剪切試驗結果 130
第五章 結論與建議 135
5.1 結論 135
5.2 建議 136
參考文獻 138
-
dc.language.isozh_TW-
dc.subject微生物誘導碳酸鈣沉澱zh_TW
dc.subject土壤改良zh_TW
dc.subject土壤液化zh_TW
dc.subjectMICPzh_TW
dc.subject砂箱試驗zh_TW
dc.subjectSoil Liquefactionen
dc.subjectMicrobially Induced Calcite Precipitationen
dc.subjectSoil Improvementen
dc.subjectSandbox Testsen
dc.title以砂箱試驗探討MICP工法對於土壤改良之成效zh_TW
dc.titleEffect of MICP Method on Soil Improvement by Sandbox Testen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪汶宜;鄭世豪;卓雨璇;陳家漢zh_TW
dc.contributor.oralexamcommitteeWen-Yi Hung;Shih-Hao Cheng;Yu-Syuan Jhuo;Chia-Ham Chenen
dc.subject.keywordMICP,微生物誘導碳酸鈣沉澱,土壤液化,土壤改良,砂箱試驗,zh_TW
dc.subject.keywordMicrobially Induced Calcite Precipitation,Soil Liquefaction,Soil Improvement,Sandbox Tests,en
dc.relation.page147-
dc.identifier.doi10.6342/NTU202301781-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-24-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf31.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved