Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88236
Title: 以彈熱材料作為固態冷媒之空調機研究
Applying Elastocaloric Material as Solid Refrigerant in Air Conditioning System
Authors: 王碩
Shuo Wang
Advisor: 陳希立
Sih-Li Chen
Co-Advisor: 陳志軒
Chih-Hsuan Chen
Keyword: 彈熱空調,彈熱效應,固態冷媒,
elastocaloric air conditioner,elastocaloric effect,solid refrigerant,
Publication Year : 2023
Degree: 碩士
Abstract: 本研究以彈熱材料作為固態冷媒之空調機之研究,透過彈熱材料受到外力進行拉伸與回覆時,所釋放或吸收之熱量供導熱流體進行空調循環使用。研究中使用直徑 0.5 mm 之彈熱線材,首先透過應變及應變率之改變,量測不同狀況下彈熱效應中的絕熱溫度變化,並計算出 COP ,接著透過對彈熱材料進行室溫下的循環訓練或 100°C 下的循環訓練,比較與原材料之絕熱溫度與 COP 間的差異。可得結果為,經過室溫下的循環訓練後之彈熱材料有較大之絕熱溫差,同時具有較大之 COP ,而高溫下的循環訓練會導致絕熱溫差下降許多,因此 COP 的增幅並不如預期明顯。最後則以原材料進行理論之分析,計算出理論之絕熱溫差與 COP ,與實驗數據進行比較,可發現由於夾頭之熱傳、評估應變之誤差等等,實驗之絕熱溫差與 COP 皆較小。
This research is using elastocaloric material as solid refrigerant in air conditioning system. When elastocaloric materials are stretched or extruded by external force, it will release or absorb latent heat. By this behavior, it can let the heat transfer fluid do the air conditioning process.In this research, elastocaloric material with diameters of 0.5mm was used. First, by changing the strain and the strain rate. The adiabatic temperature change in elastocaloric effect could be recorded and compared. Then the COP could be calculated and compared, too. Moreover, by cyclic training the material under room temperature or 100°C. The adiabatic temperature change and COP could compare with origin material. Then the result could get. The material training under room temperature has lower adiabatic temperature change, but has higher COP. However, when training under 100°C, the adiabatic temperature change drops too much. So the COP doesn’t increase too much. In the end, original material was used to do theoretical analysis. Comparing the theoretical adiabatic temperature change and COP with experimental data. Then find the reason that because the heat transfer by chuck or the evaluating error of strain and so on. The COP and adiabatic temperature change are lower in experimental data.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88236
DOI: 10.6342/NTU202301789
Fulltext Rights: 未授權
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
3.8 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved